CADNA: a library for estimating round-off error propagation. The CADNA library enables one to estimate round-off error propagation using a probabilistic approach. With CADNA the numerical quality of any simulation program can be controlled. Furthermore by detecting all the instabilities which may occur at run time, a numerical debugging of the user code can be performed. CADNA provides new numerical types on which round-off errors can be estimated. Slight modifications are required to control a code with CADNA, mainly changes in variable declarations, input and output. This paper describes the features of the CADNA library and shows how to interpret the information it provides concerning round-off error propagation in a code (Source:

References in zbMATH (referenced in 36 articles , 1 standard article )

Showing results 1 to 20 of 36.
Sorted by year (citations)

1 2 next

  1. Noeiaghdam, Samad; Araghi, Mohammad Ali Fariborzi; Abbasbandy, Saeid: Valid implementation of sinc-collocation method to solve the fuzzy Fredholm integral equation (2020)
  2. Fariborzi, Mohammad Ali; Noeiaghdam, Samad: Valid implementation of the sinc-collocation method to solve linear integral equations by the CADNA library (2019)
  3. Noeiaghdam, Samad; Fariborzi Araghi, Mohammad Ali; Abbasbandy, Saeid: Finding optimal convergence control parameter in the homotopy analysis method to solve integral equations based on the stochastic arithmetic (2019)
  4. Noeiaghdam, Samad; Sidorov, Denis Nikolaevich; Muftahov, Il’dar Rinatovich; Zhukov, Alekseĭ Vital’evich: Control of accuracy on Taylor-collocation method for load leveling problem (2019)
  5. Graillat, Stef; Jézéquel, Fabienne; Picot, Romain: Numerical validation of compensated algorithms with stochastic arithmetic (2018)
  6. Khojasteh Salkuyeh, Davod: Stepsize control for cubic spline interpolation (2017)
  7. Fariborzi Araghi, Mohammad Ali; Barzegar Kelishami, Hasan: Dynamical control of accuracy in the fuzzy Runge-Kutta methods to estimate the solution of a fuzzy differential equation (2016)
  8. Graillat, S.; Jézéquel, F.; Picot, R.: Numerical validation of compensated summation algorithms with stochastic arithmetic (2015)
  9. Jézéquel, Fabienne; Langlois, Philippe; Revol, Nathalie: First steps towards more numerical reproducibility (2014)
  10. Alt, Rene; Lamotte, Jean-Luc: Stochastic arithmetic as a tool to study the stability of biological models (2013)
  11. Denis, Christophe; Montan, Sethy: Numerical verification of industrial numerical codes (2012)
  12. Li, Wenbin; Simon, Sven; Kieß, Steffen: On the estimation of numerical error bounds in linear algebra based on discrete stochastic arithmetic (2012)
  13. Graillat, Stef; Jézéquel, Fabienne; Wang, Shiyue; Zhu, Yuxiang: Stochastic arithmetic in multiprecision (2011)
  14. Moulinec, C.; Denis, C.; Pham, C.-T.; Rougé, D.; Hervouet, J.-M.; Razafindrakoto, E.; Barber, R. W.; Emerson, D. R.; Gu, X.-J.: TELEMAC: an efficient hydrodynamics suite for massively parallel architectures (2011)
  15. Jézéquel, Fabienne; Chesneaux, Jean-Marie; Lamotte, Jean-Luc: A new version of the CADNA library for estimating round-off error propagation in Fortran programs (2010) ioport
  16. Khojasteh Salkuyeh, Davod; Toutounian, Faezeh: Optimal iterate of the power and inverse iteration methods (2009)
  17. Jézéquel, Fabienne; Chesneaux, Jean-Marie: CADNA: a library for estimating round-off error propagation (2008)
  18. Salkuyeh, Davod Khojasteh; Toutounian, Faezeh; Yazdi, Hamed Shariat: A procedure with stepsize control for solving (n) one-dimensional IVPs (2008)
  19. Alt, René; Lamotte, Jean-Luc; Markov, Svetoslav: Testing stochastic arithmetic and CESTAC method via polynomial computation (2007)
  20. Jézéquel, F.; Rico, F.; Chesneaux, J.-M.; Charikhi, M.: Reliable computation of a multiple integral involved in the neutron star theory (2006)

1 2 next

Further publications can be found at: