Ox is an object-oriented matrix programming language with a comprehensive mathematical and statistical function library. Matrices can be used directly in expressions, for example to multiply two matrices, or to invert a matrix. The major features of Ox are its speed, extensive library, and well-designed syntax, which leads to programs which are easier to maintain. For a first impression of the matrix and statistical function library see the Function summary. Versions of Ox are available for many platforms.

References in zbMATH (referenced in 461 articles )

Showing results 1 to 20 of 461.
Sorted by year (citations)

1 2 3 ... 22 23 24 next

  1. Araújo, Mariana C.; Cysneiros, Audrey H. M. A.; Montenegro, Lourdes C.: Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models (2020)
  2. Kunihama, Tsuyoshi; Li, Zehang Richard; Clark, Samuel J.; Mccormick, Tyler H.: Bayesian factor models for probabilistic cause of death assessment with verbal autopsies (2020)
  3. Kurita, Takamitsu: Likelihood-based tests for parameter constancy in (I(2)) CVAR models with an application to fixed-term deposit data (2020)
  4. Kurita, Takamitsu: Normalising cointegrating relationships subject to long-run exclusion (2020)
  5. Lemonte, Artur J.; Moreno-Arenas, Germán: Improved estimation for a new class of parametric link functions in binary regression (2020)
  6. Lemonte, Artur J.; Moreno-Arenas, Germán: On a heavy-tailed parametric quantile regression model for limited range response variables (2020)
  7. Li, Mengheng; Koopman, Siem Jan; Lit, Rutger; Petrova, Desislava: Long-term forecasting of El Niño events via dynamic factor simulations (2020)
  8. Mazucheli, Josmar; Bertoli, Wesley; Oliveira, Ricardo P.; Menezes, André F. B.: On the discrete quasi xgamma distribution (2020)
  9. Alizadeh, Morad; Afshari, Mahmoud; Altun, Emrah; Ozel, Gamze; Eftekharian, Abbas: A new odd log-logistic Lindley distribution with properties and applications (2019)
  10. Cribari-Neto, Francisco; Pereira, Inara F. S.: Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches (2019)
  11. Hashimoto, Elizabeth M.; Ortega, Edwin M. M.; Cordeiro, Gauss M.; Cancho, Vicente G.; Klauberg, Carine: Zero-spiked regression models generated by gamma random variables with application in the resin oil production (2019)
  12. Irie, Kaoru; West, Mike: Bayesian emulation for multi-step optimization in decision problems (2019)
  13. João Duarte; Vinícius Mayrink: slfm: An R Package to Evaluate Coherent Patterns in Microarray Data via Factor Analysis (2019) not zbMATH
  14. Kobayashi, Genya; Kakamu, Kazuhiko: Approximate Bayesian computation for Lorenz curves from grouped data (2019)
  15. Lemonte, Artur J.; Moreno-Arenas, Germán: On residuals in generalized Johnson (S_B) regressions (2019)
  16. Lima, Maria C. S.; Cordeiro, Gauss M.; Ortega, Edwin M. M.; Nascimento, Abraão D. C.: A new extended normal regression model: simulations and applications (2019)
  17. Pires, Magda Carvalho; Quinino, Roberto Da Costa: Repeated responses in misclassification binary regression: a Bayesian approach (2019)
  18. Roume, Clément; Ezzina, Samar; Blain, Hubert; Delignières, Didier: Biases in the simulation and analysis of fractal processes (2019)
  19. Alizadeh, Morad; Altun, Emrah; Cordeiro, Gauss M.; Rasekhi, Mahdi: The odd power Cauchy family of distributions: properties, regression models and applications (2018)
  20. Chow, Sy-Miin; Ou, Lu; Ciptadi, Arridhana; Prince, Emily B.; You, Dongjun; Hunter, Michael D.; Rehg, James M.; Rozga, Agata; Messinger, Daniel S.: Representing sudden shifts in intensive dyadic interaction data using differential equation models with regime switching (2018)

1 2 3 ... 22 23 24 next