Dynamics: numerical explorations. Accompanying computer program dynamics. Coauthored by Eric J. Kostelich. With 3 1/2” DOS Diskette. This program (and the accompanying handbook) is a tool to help visualize the properties of discrete and continuous dynamical systems, including the plotting of attractors, basins of attraction, the computing of straddle trajectories, the search for all periodic orbits of a specified period, bifurcation diagrams, the search for stable and unstable manifolds, the calculation of dimensions and Lyapunov exponents etc.par The program provides about 30 maps and differential equations to choose from (e.g., the logistic map, the Lorenz system or Chua’s circuit), one can play around with the parameters, but, unless one invests in an additional C compiler, one can not insert new equations.

References in zbMATH (referenced in 181 articles )

Showing results 1 to 20 of 181.
Sorted by year (citations)

1 2 3 ... 8 9 10 next

  1. Ganatra, Vaibhav; Banerjee, Soumitro: Sketching 1D stable manifolds of 2D maps without the inverse (2022)
  2. Pei, Lijun; Chong, Antonio S. E.; Pavlovskaia, Ekaterina; Wiercigroch, Marian: Computation of periodic orbits for piecewise linear oscillator by harmonic balance methods (2022)
  3. Piccirillo, Vinícius: Control of homoclinic bifurcation in two-dimensional dynamical systems by a feedback law based on (L^p) spaces (2022)
  4. de Paula Viveiros, Alexandre Magno: Non-orbital characterizations of strange attractors: effective intervals and multifractality measures (2021)
  5. Stolerman, Lucas M.; Ghosh, Pradipta; Rangamani, Padmini: Stability analysis of a signaling circuit with dual species of gtpase switches (2021)
  6. Wagemakers, Alexandre; Daza, Alvar; Sanjuán, Miguel A. F.: How to detect Wada basins (2021)
  7. Lazarek, M.; Brzeski, P.; Solecki, W.; Perlikowski, P.: Detection and classification of solutions for systems interacting by soft impacts with sample-based method (2020)
  8. Pebeu, M. F. Kepnang; Ndjomatchoua, Frank T.; Mbong, T. L. M. Djomo; Gninzanlong, Carlos L.; Tabi, C. B.; Kofane, T. C.: Orbital stability and homoclinic bifurcation in a parametrized deformable double-well potential (2020)
  9. Wagemakers, Alexandre; Daza, Alvar; Sanjuán, Miguel A. F.: Corrigendum to: “The saddle-straddle method to test for Wada basins” (2020)
  10. Wagemakers, Alexandre; Daza, Alvar; Sanjuán, Miguel A. F.: The saddle-straddle method to test for Wada basins (2020)
  11. Andonovski, Nemanja; Moglie, Franco; Lenci, Stefano: Introduction to scientific computing technologies for global analysis of multidimensional nonlinear dynamical systems (2019)
  12. Edelev, A. V.; Zorkal’tsev, V. I.: An algorithm for determining optimal and suboptimal trajectories of the development of a system (2019)
  13. Gharout, Hacene; Akroune, Nourredine; Taha, Abelkadous; Prunaret, Daniele-Fournier: Chaotic dynamics of a three-dimensional endomorphism (2019)
  14. Iyengar, Sudharsana V.; Balakrishnan, Janaki: The (q)-deformed tinkerbell map (2018)
  15. Gyebrószki, Gergely; Csernák, Gábor: Clustered simple cell mapping: an extension to the simple cell mapping method (2017)
  16. Jiang, Tao; Yang, Zhi-Yan: Bifurcations and chaos in Mira 2 map (2017)
  17. Mateos, D. M.; Riveaud, L. E.; Lamberti, P. W.: Detecting dynamical changes in time series by using the Jensen Shannon divergence (2017)
  18. Belardinelli, Pierpaolo; Lenci, Stefano: An efficient parallel implementation of cell mapping methods for MDOF systems (2016)
  19. Dudkowski, Dawid; Jafari, Sajad; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Prasad, Awadhesh: Hidden attractors in dynamical systems (2016)
  20. Jakimowicz, Aleksander: Fundamental sources of economic complexity (2016)

1 2 3 ... 8 9 10 next