FORM
Computer algebra system (CAS) for very big calculations in theoretical particle physics, with a very small memory footprint. Also supports multiple kernels (see TFORM) and distributed computations on a network (ParFORM). See also: http://dx.doi.org/10.1016/j.cpc.2012.12.028
Keywords for this software
References in zbMATH (referenced in 345 articles , 1 standard article )
Showing results 1 to 20 of 345.
Sorted by year (- Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schönwald, K.; Schneider, C.: The polarized transition matrix element (A_gq(N)) of the variable flavor number scheme at (O(\alpha_s^3)) (2021)
- Blümlein, J.; Maier, A.; Marquard, P.; Schäfer, G.: The fifth-order post-newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach: potential contributions (2021)
- Blümlein, J.; Maier, A.; Marquard, P.; Schäfer, G.: The 6th post-Newtonian potential terms at (O( G_N^4)) (2021)
- Blümlein, J.; Marquard, P.; Schneider, C.; Schönwald, K.: The three-loop unpolarized and polarized non-singlet anomalous dimensions from off shell operator matrix elements (2021)
- Bridges, Elliot; Mafra, Carlos R.: Local BCJ numerators for ten-dimensional SYM at one loop (2021)
- Cao, Weiguang; Herzog, Franz; Melia, Tom; Nepveu, Jasper Roosmale: Renormalization and non-renormalization of scalar EFTs at higher orders (2021)
- Gracey, John A.: Generalized Gross-Neveu universality class with non-abelian symmetry (2021)
- Heinrich, Gudrun: Collider physics at the precision frontier (2021)
- Herren, Florian; Thomsen, Anders Eller: On ambiguities and divergences in perturbative renormalization group functions (2021)
- Kißler, Henry: Off-shell diagrammatics for quantum gravity (2021)
- Kniehl, B. A.; Velizhanin, V. N.: Non-planar universal anomalous dimension of twist-two operators with general Lorentz spin at four loops in (\mathcalN= 4) SYM theory (2021)
- Kompaniets, Mikhail; Pikelner, Andrey: Critical exponents from five-loop scalar theory renormalization near six-dimensions (2021)
- Moch, S.; Van Thurenhout, S.: Renormalization of non-singlet quark operator matrix elements for off-forward hard scattering (2021)
- Nogradi, Daniel: Vector fields, RG flows and emergent gauge symmetry (2021)
- Pikelner, Andrey: Three-loop vertex integrals at symmetric point (2021)
- Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.; Schönwald, K.: The three-loop single mass polarized pure singlet operator matrix element (2020)
- Ablinger, J.; Blümlein, J.; De Freitas, A.; Goedicke, A.; Saragnese, M.; Schneider, C.; Schönwald, K.: The two-mass contribution to the three-loop polarized gluonic operator matrix element (A_gg, Q^(3)) (2020)
- Ablinger, J.; Blümlein, J.; De Freitas, A.; Saragnese, M.; Schneider, C.; Schönwald, K.: The three-loop polarized pure singlet operator matrix element with two different masses (2020)
- Bargheer, Till; Chestnov, Vsevolod; Schomerus, Volker: The multi-Regge limit from the Wilson loop OPE (2020)
- Beekveldt, Robert; Borinsky, Michael; Herzog, Franz: The Hopf algebra structure of the (R^\ast)-operation (2020)