Scikit

Scikit-learn: machine learning in python. Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from url{http://scikit-learn.sourceforge.net}.


References in zbMATH (referenced in 365 articles , 1 standard article )

Showing results 1 to 20 of 365.
Sorted by year (citations)

1 2 3 ... 17 18 19 next

  1. Adam Richie-Halford, Manjari Narayan, Noah Simon, Jason Yeatman, Ariel Rokem: Groupyr: Sparse Group Lasso in Python (2021) not zbMATH
  2. Andrea Bommert, Michel Lang: stabm: Stability Measures for Feature Selection (2021) not zbMATH
  3. Barber, Rina Foygel; Candès, Emmanuel J.; Ramdas, Aaditya; Tibshirani, Ryan J.: Predictive inference with the jackknife+ (2021)
  4. Bartzos, Evangelos; Emiris, Ioannis Z.; Legerský, Jan; Tsigaridas, Elias: On the maximal number of real embeddings of minimally rigid graphs in (\mathbbR^2,\mathbbR^3) and (S^2) (2021)
  5. Benjamin Paaßen, Jessica McBroom, Bryn Jeffries, Irena Koprinska, Kalina Yacef: ast2vec: Utilizing Recursive Neural Encodings of Python Programs (2021) arXiv
  6. D.C.L. Handler, P.A. Haynes: PeptideMind - Applying machine learning algorithms to assess replicate quality in shotgun proteomic data (2021) not zbMATH
  7. Ding, Chenchen; Han, Haitao; Li, Qianyue; Yang, Xiaoxia; Liu, Taigang: iT3SE-PX: identification of bacterial type III secreted effectors using PSSM profiles and XGBoost feature selection (2021)
  8. Karban, Pavel; Pánek, David; Orosz, Tamás; Petrášová, Iveta; Doležel, Ivo: FEM based robust design optimization with Agros and Ārtap (2021)
  9. Petri Laarne, Martha A. Zaidan, Tuomo Nieminen: ennemi: Non-linear correlation detection with mutual information (2021) not zbMATH
  10. Read, Jesse; Pfahringer, Bernhard; Holmes, Geoffrey; Frank, Eibe: Classifier chains: a review and perspectives (2021)
  11. Vieilledent G: forestatrisk: a Python package for modelling and forecasting deforestation in the tropics (2021) not zbMATH
  12. Zöller, Marc-André; Huber, Marco F.: Benchmark and survey of automated machine learning frameworks (2021)
  13. Abrishami, Tara; Guillen, Nestor; Rule, Parker; Schutzman, Zachary; Solomon, Justin; Weighill, Thomas; Wu, Si: Geometry of graph partitions via optimal transport (2020)
  14. Alain Jungo, Olivier Scheidegger, Mauricio Reyes, Fabian Balsiger: pymia: A Python package for data handling and evaluation in deep learning-based medical image analysis (2020) arXiv
  15. Albert Steppi; Benjamin M. Gyori; John A. Bachman: Adeft: Acromine-based Disambiguation of Entities from Text with applications to the biomedical literature (2020) not zbMATH
  16. Alexandrov, Alexander; Benidis, Konstantinos; Bohlke-Schneider, Michael; Flunkert, Valentin; Gasthaus, Jan; Januschowski, Tim; Maddix, Danielle C.; Rangapuram, Syama; Salinas, David; Schulz, Jasper; Stella, Lorenzo; Türkmen, Ali Caner; Wang, Yuyang: GluonTS: probabilistic and neural time series modeling in Python (2020)
  17. Andreux, Mathieu; Angles, Tomás; Exarchakis, Georgios; Leonarduzzi, Roberto; Rochette, Gaspar; Thiry, Louis; Zarka, John; Mallat, Stéphane; Andén, Joakim; Belilovsky, Eugene; Bruna, Joan; Lostanlen, Vincent; Chaudhary, Muawiz; Hirn, Matthew J.; Oyallon, Edouard; Zhang, Sixin; Cella, Carmine; Eickenberg, Michael: Kymatio: scattering transforms in Python (2020)
  18. Anil, Robin; Capan, Gokhan; Drost-Fromm, Isabel; Dunning, Ted; Friedman, Ellen; Grant, Trevor; Quinn, Shannon; Ranjan, Paritosh; Schelter, Sebastian; Yılmazel, Özgür: Apache Mahout: machine learning on distributed dataflow systems (2020)
  19. Anthony D. Blaom, Franz Kiraly, Thibaut Lienart, Yiannis Simillides, Diego Arenas, Sebastian J. Vollmer: MLJ: A Julia package for composable Machine Learning (2020) arXiv
  20. Armin Moin, Stephan Rössler, Marouane Sayih, Stephan Günnemann: From Things’ Modeling Language (ThingML) to Things’ Machine Learning (ThingML2) (2020) arXiv

1 2 3 ... 17 18 19 next