References in zbMATH (referenced in 68 articles , 1 standard article )

Showing results 1 to 20 of 68.
Sorted by year (citations)

1 2 3 4 next

  1. Ben Youngman: evgam: An R package for Generalized Additive Extreme Value Models (2020) arXiv
  2. Ferrara, Giancarlo: Stochastic frontier models using R (2020)
  3. Hasler, Caren; Craiu, Radu V.: Nonparametric imputation method for nonresponse in surveys (2020)
  4. Monterrubio-Gómez, Karla; Roininen, Lassi; Wade, Sara; Damoulas, Theodoros; Girolami, Mark: Posterior inference for sparse hierarchical non-stationary models (2020)
  5. Torsten Hothorn: Most Likely Transformations: The mlt Package (2020) not zbMATH
  6. Brizzi, Francesco; Birrell, Paul J.; Plummer, Martyn T.; Kirwan, Peter; Brown, Alison E.; Delpech, Valerie C.; Gill, O. Noel; De Angelis, Daniela: Extending Bayesian back-calculation to estimate age and time specific HIV incidence (2019)
  7. Djeundje, Viani Biatat; Crook, Jonathan: Dynamic survival models with varying coefficients for credit risks. (2019)
  8. Djeundje, Viani Biatat; Crook, Jonathan: Identifying hidden patterns in credit risk survival data using generalised additive models (2019)
  9. Haziq Jamil, Wicher Bergsma: iprior: An R Package for Regression Modelling using I-priors (2019) arXiv
  10. Kneib, Thomas; Klein, Nadja; Lang, Stefan; Umlauf, Nikolaus: Modular regression -- a Lego system for building structured additive distributional regression models with tensor product interactions (2019)
  11. Reimherr, Matthew: Comments on “Modular regression -- a Lego system for building structured additive distributional regression models with tensor product interactions” (2019)
  12. Seongil Jo; Taeryon Choi; Beomjo Park; Peter Lenk: bsamGP: An R Package for Bayesian Spectral Analysis Models Using Gaussian Process Priors (2019) not zbMATH
  13. Victor Maus and Gilberto Câmara and Marius Appel and Edzer Pebesma: dtwSat: Time-Weighted Dynamic Time Warping for Satellite Image Time Series Analysis in R (2019) not zbMATH
  14. Zeldow, Bret; Lo Re, Vincent III; Roy, Jason: A semiparametric modeling approach using Bayesian additive regression trees with an application to evaluate heterogeneous treatment effects (2019)
  15. Zhang, Youyi; Morris, Jeffrey S.; Aerry, Shivali Narang; Rao, Arvind U. K.; Baladandayuthapani, Veerabhadran: Radio-iBAG: radiomics-based integrative Bayesian analysis of multiplatform genomic data (2019)
  16. Brown, Jonathon D.: Advanced statistics for the behavioral sciences. A computational approach with R (2018)
  17. Chatla, Suneel Babu; Shmueli, Galit: Efficient estimation of COM-Poisson regression and a generalized additive model (2018)
  18. Daniel Ludecke: ggeffects: Tidy Data Frames of Marginal Effects from Regression Models (2018) not zbMATH
  19. Meyer, Mary C.: A framework for estimation and inference in generalized additive models with shape and order restrictions (2018)
  20. Song, Anchao; Ma, Tiefeng; Lv, Shaogao; Lin, Changsheng: A model-free variable selection method for reducing the number of redundant variables (2018)

1 2 3 4 next