References in zbMATH (referenced in 24 articles , 1 standard article )

Showing results 1 to 20 of 24.
Sorted by year (citations)

1 2 next

  1. David Ardia, Keven Bluteau, Samuel Borms, Kris Boudt: The R package sentometrics to compute, aggregate and predict with textual sentiment (2021) arXiv
  2. Di Benedetto, Giuseppe; Caron, François; Teh, Yee Whye: Nonexchangeable random partition models for microclustering (2021)
  3. Samuel Borms, David Ardia, Keven Bluteau, Kris Boudt, Jeroen Van Pelt, Andres Algaba: The R Package sentometrics to Compute, Aggregate, and Predict with Textual Sentiment (2021) not zbMATH
  4. Yan, Xiaohan; Bien, Jacob: Rare feature selection in high dimensions (2021)
  5. Anderlucci, Laura; Viroli, Cinzia: Mixtures of Dirichlet-multinomial distributions for supervised and unsupervised classification of short text data (2020)
  6. Calissano, Anna; Vantini, Simone; Arena, Marika: Monitoring rare categories in sentiment and opinion analysis: a Milan mega event on Twitter platform (2020)
  7. Daneshgar, Neda; Sarmad, Majid: \textttword.alignment: an \textttRpackage for computing statistical word alignment and its evaluation (2020)
  8. Lai, Yuanhao; McLeod, Ian: Ensemble quantile classifier (2020)
  9. Michelangelo Misuraca, Alessia Forciniti, Germana Scepi, Maria Spano: Sentiment Analysis for Education with R: packages, methods and practical applications (2020) arXiv
  10. Modesto Escobar, Luis Martinez-Uribe: Network Coincidence Analysis: The netCoin R Package (2020) not zbMATH
  11. Ekin, Tahir; Lakomski, Greg; Musal, Rasim Muzaffer: An unsupervised Bayesian hierarchical method for medical fraud assessment (2019)
  12. Hay-Jahans, Christopher: R companion to elementary applied statistics (2019)
  13. Knoll, Julian; Stübinger, Johannes; Grottke, Michael: Exploiting social media with higher-order factorization machines: statistical arbitrage on high-frequency data of the S&P 500 (2019)
  14. Ramasubramanian, Karthik; Singh, Abhishek: Machine learning using R. With time series and industry-based use cases in R (2019)
  15. Aggarwal, Charu C.: Machine learning for text (2018)
  16. Alexander Foss; Marianthi Markatou: kamila: Clustering Mixed-Type Data in R and Hadoop (2018) not zbMATH
  17. Peter Wittek and Shi Gao and Ik Lim and Li Zhao: somoclu: An Efficient Parallel Library for Self-Organizing Maps (2017) not zbMATH
  18. Kurt Hornik; Bettina Grün: movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions (2014) not zbMATH
  19. Zhao, Yanchang: R and data mining. Examples and case studies (2013)
  20. Kurt Hornik; Ingo Feinerer; Martin Kober; Christian Buchta: Spherical k-Means Clustering (2012) not zbMATH

1 2 next