Vador

Vlasov Approximation by a Direct and Object-oriented Resolution. The Vlasov equation describes the evolution of a system of particles under the effects of self-consistent electro magnetic fields. The unknown f(t,x,v), depending on the time t, the position x, and the velocity v, represents the distribution function of particles (electrons, ions,...) in phase space. This model can be used for the study of beam propagation or of a collisionless plasma.


References in zbMATH (referenced in 120 articles )

Showing results 1 to 20 of 120.
Sorted by year (citations)

1 2 3 4 5 6 next

  1. Chen, Jiajie; Cai, Xiaofeng; Qiu, Jianxian; Qiu, Jing-Mei: Adaptive order WENO reconstructions for the semi-Lagrangian finite difference scheme for advection problem (2021)
  2. Ding, Zhiyan; Einkemmer, Lukas; Li, Qin: Dynamical low-rank integrator for the linear Boltzmann equation: error analysis in the diffusion limit (2021)
  3. Filbet, Francis; Rodrigues, L. Miguel; Zakerzadeh, Hamed: Convergence analysis of asymptotic preserving schemes for strongly magnetized plasmas (2021)
  4. Liu, Hongtao; Cai, Xiaofeng; Lapenta, Giovanni; Cao, Yong: Conservative semi-Lagrangian kinetic scheme coupled with implicit finite element field solver for multidimensional Vlasov Maxwell system (2021)
  5. Zheng, Nanyi; Cai, Xiaofeng; Qiu, Jing-Mei; Qiu, Jianxian: A conservative semi-Lagrangian hybrid Hermite WENO scheme for linear transport equations and the nonlinear Vlasov-Poisson system (2021)
  6. Wang, Hanquan; Cheng, Ronghua; Wu, Xinming: A splitting Fourier pseudospectral method for Vlasov-Poisson-Fokker-Planck system (2020)
  7. Banks, Jeffrey W.; Odu, Andre Gianesini; Berger, Richard; Chapman, Thomas; Arrighi, William; Brunner, Stephan: High-order accurate conservative finite difference methods for Vlasov equations in 2D+2V (2019)
  8. Després, Bruno: Scattering structure and Landau damping for linearized Vlasov equations with inhomogeneous Boltzmannian states (2019)
  9. Di, Yana; Fan, Yuwei; Kou, Zhenzhong; Li, Ruo; Wang, Yanli: Filtered hyperbolic moment method for the Vlasov equation (2019)
  10. Einkemmer, Lukas: A performance comparison of semi-Lagrangian discontinuous Galerkin and spline based Vlasov solvers in four dimensions (2019)
  11. Einkemmer, Lukas; Lubich, Christian: A quasi-conservative Dynamical Low-rank algorithm for the Vlasov equation (2019)
  12. Fatone, L.; Funaro, D.; Manzini, G.: Arbitrary-order time-accurate semi-Lagrangian spectral approximations of the Vlasov-Poisson system (2019)
  13. Fatone, Lorella; Funaro, Daniele; Manzini, Gianmarco: A semi-Lagrangian spectral method for the Vlasov-Poisson system based on Fourier, Legendre and Hermite polynomials (2019)
  14. Ghosh, D.; Chapman, T. D.; Berger, R. L.; Dimits, A.; Banks, J. W.: A multispecies, multifluid model for laser-induced counterstreaming plasma simulations (2019)
  15. Barsamian, Yann; Bernier, Joackim; Hirstoaga, Sever A.; Mehrenberger, Michel: Verification of (2D\times2D) and two-species Vlasov-Poisson solvers (2018)
  16. Bonilla, Luis L.; Carpio, Ana; Carretero, Manuel; Duro, Gema; Negreanu, Mihaela; Terragni, Filippo: A convergent numerical scheme for integrodifferential kinetic models of angiogenesis (2018)
  17. Cai, Xiaofeng; Guo, Wei; Qiu, Jing-Mei: A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting (2018)
  18. Cai, Zhenning; Wang, Yanli: Suppression of recurrence in the Hermite-spectral method for transport equations (2018)
  19. Deriaz, Erwan; Peirani, Sébastien: Six-dimensional adaptive simulation of the Vlasov equations using a hierarchical basis (2018)
  20. Einkemmer, Lukas; Lubich, Christian: A low-rank projector-splitting integrator for the Vlasov-Poisson equation (2018)

1 2 3 4 5 6 next


Further publications can be found at: http://www.univ-orleans.fr/mapmo/membres/filbet/index_vad.html