libMesh

The libMesh library provides a framework for the numerical simulation of partial differential equations using arbitrary unstructured discretizations on serial and parallel platforms. A major goal of the library is to provide support for adaptive mesh refinement (AMR) computations in parallel while allowing a research scientist to focus on the physics they are modeling. libMesh currently supports 1D, 2D, and 3D steady and transient simulations on a variety of popular geometric and finite element types. The library makes use of high-quality, existing software whenever possible. PETSc is used for the solution of linear systems on both serial and parallel platforms, and LASPack is included with the library to provide linear solver support on serial machines. An optional interface to SLEPc is also provided for solving both standard and generalized eigenvalue problems.


References in zbMATH (referenced in 146 articles , 1 standard article )

Showing results 1 to 20 of 146.
Sorted by year (citations)

1 2 3 ... 6 7 8 next

  1. Arndt, Daniel; Bangerth, Wolfgang; Davydov, Denis; Heister, Timo; Heltai, Luca; Kronbichler, Martin; Maier, Matthias; Pelteret, Jean-Paul; Turcksin, Bruno; Wells, David: The \textscdeal.II finite element library: design, features, and insights (2021)
  2. Bastian, Peter; Blatt, Markus; Dedner, Andreas; Dreier, Nils-Arne; Engwer, Christian; Fritze, René; Gräser, Carsten; Grüninger, Christoph; Kempf, Dominic; Klöfkorn, Robert; Ohlberger, Mario; Sander, Oliver: The \textscDuneframework: basic concepts and recent developments (2021)
  3. Brown et al.: libCEED: Fast algebra for high-order element-based discretizations (2021) not zbMATH
  4. Luo, Li; Cai, Xiao-Chuan; Keyes, David E.: Nonlinear preconditioning strategies for two-phase flows in porous media discretized by a fully implicit discontinuous Galerkin method (2021)
  5. Degen, Denise; Veroy, Karen; Wellmann, Florian: Certified reduced basis method in geosciences. Addressing the challenge of high-dimensional problems (2020)
  6. Favino, Marco; Hunziker, Jürg; Caspari, Eva; Quintal, Beatriz; Holliger, Klaus; Krause, Rolf: Fully-automated adaptive mesh refinement for media embedding complex heterogeneities: application to poroelastic fluid pressure diffusion (2020)
  7. Grave, Malú; Camata, José J.; Coutinho, Alvaro L. G. A.: A new convected level-set method for gas bubble dynamics (2020)
  8. Grave, M.; Camata, José J.; Coutinho, Alvaro L. G. A.: Residual-based variational multiscale 2D simulation of sediment transport with morphological changes (2020)
  9. Kaczmarczyk, Łukasz; Ullah, Zahur; Lewandowski, Karol; Meng, Xuan; Zhou, Xiao-Yi; Athanasiadis, Ignatios; Nguyen, Hoang; Chalons-Mouriesse, Christophe-Alexandre; Richardson, Euan J.; Miur, Euan; Shvarts, Andrei G.; Wakeni, Mebratu; Pearce, Chris J.: MoFEM: An open source, parallel nite element library (2020) not zbMATH
  10. Kolahdouz, Ebrahim M.; Bhalla, Amneet Pal Singh; Craven, Brent A.; Griffith, Boyce E.: An immersed interface method for discrete surfaces (2020)
  11. Kopaničáková, Alena; Krause, Rolf: A recursive multilevel trust region method with application to fully monolithic phase-field models of brittle fracture (2020)
  12. Luo, Li; Liu, Lulu; Cai, Xiao-Chuan; Keyes, David E.: Fully implicit hybrid two-level domain decomposition algorithms for two-phase flows in porous media on 3D unstructured grids (2020)
  13. Sadasiva, S.; Vaitheeswaran, P.; Subbarayan, G.: A phase field computational procedure for electromigration with specified contact angle and diffusional anisotropy (2020)
  14. Smetana, Kathrin: Static condensation optimal port/interface reduction and error estimation for structural health monitoring (2020)
  15. Vadala-Roth, Ben; Acharya, Shashank; Patankar, Neelesh A.; Rossi, Simone; Griffith, Boyce E.: Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity (2020)
  16. von Planta, Cyrill; Vogler, Daniel; Chen, Xiaoqing; Nestola, Maria G. C.; Saar, Martin O.; Krause, Rolf: Modelling of hydro-mechanical processes in heterogeneous fracture intersections using a fictitious domain method with variational transfer operators (2020)
  17. Abdulle, Assyr; De Souza, Giacomo Rosilho: A local discontinuous Galerkin gradient discretization method for linear and quasilinear elliptic equations (2019)
  18. Caboussat, Alexandre; Glowinski, Roland; Gourzoulidis, Dimitrios; Picasso, Marco: Numerical approximation of orthogonal maps (2019)
  19. Cerveny, Jakub; Dobrev, Veselin; Kolev, Tzanio: Nonconforming mesh refinement for high-order finite elements (2019)
  20. Feng, Xinzeng; Hormuth, David A. II; Yankeelov, Thomas E.: An adjoint-based method for a linear mechanically-coupled tumor model: application to estimate the spatial variation of murine glioma growth based on diffusion weighted magnetic resonance imaging (2019)

1 2 3 ... 6 7 8 next


Further publications can be found at: http://libmesh.sourceforge.net/publications.php