LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is a classical molecular dynamics code. LAMMPS can model an ensemble of particles in a liquid, solid, or gaseous state. It can model atomic, polymeric, biological, metallic, or granular systems using a variety of force fields and boundary conditions Homepage:

References in zbMATH (referenced in 67 articles , 1 standard article )

Showing results 1 to 20 of 67.
Sorted by year (citations)

1 2 3 4 next

  1. B. Boys, T. J. Dodwell, M. Hobbs, M. Girolami: PeriPy - A High Performance OpenCL Peridynamics Package (2021) arXiv
  2. Dexter D. Antonio, Jiawei Guo, Sam J. Holton, Ambarish R. Kulkarni: Simplifying computational workflows with the Multiscale Atomic Zeolite Simulation Environment (MAZE) (2021) not zbMATH
  3. Paret, Joris; Coslovich, Daniele: partycls: A Python package for structural clustering (2021) not zbMATH
  4. Shariati, Mojtaba; Azizi, Babak; Hosseini, Mohammad; Shishesaz, Mohammad: On the calibration of size parameters related to non-classical continuum theories using molecular dynamics simulations (2021)
  5. Vasileios Angelidakis, Sadegh Nadimi, Masahide Otsubo, Stefano Utili: CLUMP: A Code Library to generate Universal Multi-sphere Particles (2021) not zbMATH
  6. Xia, Chunxiao; Xu, Wenlong; Nie, Guohua: Dynamic quasi-continuum model for plate-type nano-materials and analysis of fundamental frequency (2021)
  7. You, Huaiqian; Lu, Xin Yang; Trask, Nathaniel; Yu, Yue: An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems (2021)
  8. Yu, Yue; You, Huaiqian; Trask, Nathaniel: An asymptotically compatible treatment of traction loading in linearly elastic peridynamic fracture (2021)
  9. Fu, Szu-Pei P.; Ryham, Rolf; Klöckner, Andreas; Wala, Matt; Jiang, Shidong; Young, Yuan-Nan: Simulation of multiscale hydrophobic lipid dynamics via efficient integral equation methods (2020)
  10. Nejat Pishkenari, Hossein; Golzari, Ali: A temperature-calibrated continuum model for vibrational analysis of the fullerene family using molecular dynamics simulations (2020)
  11. Popovici, Doru Thom; Schatz, Martin D.; Franchetti, Franz; Low, Tze Meng: A flexible framework for multidimensional DFTs (2020)
  12. Wang, Liwei; Chen, Zengsheng; Zhang, Jiafeng; Zhang, Xiwen; Wu, Zhongjun J.: Modeling clot formation of shear-injured platelets in flow by a dissipative particle dynamics method (2020)
  13. You, Huaiqian; Lu, Xinyang; Task, Nathaniel; Yu, Yue: An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems (2020)
  14. Buryachenko, Valeriy A.: Computational homogenization in linear elasticity of peristatic periodic structure composites (2019)
  15. Ni, Tao; Zaccariotto, Mirco; Zhu, Qi-Zhi; Galvanetto, Ugo: Static solution of crack propagation problems in peridynamics (2019)
  16. Sun, Wei; Fish, Jacob: Superposition-based coupling of peridynamics and finite element method (2019)
  17. Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, Weinan E: DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models (2019) arXiv
  18. Zhen Zhang, Dong-Bo Zhang, Tao Sun, Renata Wentzcovitch: phq: a Fortran code to compute phonon quasiparticle properties and dispersions (2019) arXiv
  19. Du, Qiang; Tao, Yunzhe; Tian, Xiaochuan: A peridynamic model of fracture mechanics with bond-breaking (2018)
  20. Horacio V. Guzman, Nikita Tretyakov, Hideki Kobayashi, Aoife C. Fogarty, Karsten Kreis, Jakub Krajniak, Christoph Junghans, Kurt Kremer, Torsten Stuehn: ESPResSo++ 2.0: Advanced methods for multiscale molecular simulation (2018) arXiv

1 2 3 4 next