forecast

R package forecast: Forecasting functions for time series and linear models , Methods and tools for displaying and analysing univariate time series forecasts including exponential smoothing via state space models and automatic ARIMA modelling. (Source: http://cran.r-project.org/web/packages)


References in zbMATH (referenced in 158 articles , 1 standard article )

Showing results 1 to 20 of 158.
Sorted by year (citations)

1 2 3 ... 6 7 8 next

  1. Abolghasemi, Mahdi; Hyndman, Rob J.; Spiliotis, Evangelos; Bergmeir, Christoph: Model selection in reconciling hierarchical time series (2022)
  2. Dutta, Bornali; Barman, Manash Pratim; Patowary, Arnab Narayan: Exponential smoothing state space innovation model for forecasting road accident deaths in India (2022)
  3. Edgar Santos-Fernandez, Jay M. Ver Hoef, James M. McGree, Daniel J. Isaak, Kerrie Mengersen, Erin E. Peterson: SSNbayes: An R package for Bayesian spatio-temporal modelling on stream networks (2022) arXiv
  4. Hajirahimi, Zahra; Khashei, Mehdi: Series hybridization of parallel (SHOP) models for time series forecasting (2022)
  5. Hunter, Michael D.; Fatimah, Haya; Bornovalova, Marina A.: Two filtering methods of forecasting linear and nonlinear dynamics of intensive longitudinal data (2022)
  6. Kang, Yanfei; Cao, Wei; Petropoulos, Fotios; Li, Feng: Forecast with forecasts: diversity matters (2022)
  7. Liu, Congzheng; Letchford, Adam N.; Svetunkov, Ivan: Newsvendor problems: an integrated method for estimation and optimisation (2022)
  8. Pizarroso, J., Portela, J., Muñoz, A: NeuralSens: Sensitivity Analysis of Neural Networks (2022) not zbMATH
  9. Saeed, Waddah: Frequency-based ensemble forecasting model for time series forecasting (2022)
  10. Santos-Fernandez, Edgar; Ver Hoef, Jay M.; Peterson, Erin E.; McGree, James; Isaak, Daniel J.; Mengersen, Kerrie: Bayesian spatio-temporal models for stream networks (2022)
  11. Trull, Oscar; García-Díaz, J. Carlos; Peiró-Signes, A.: Multiple seasonal STL decomposition with discrete-interval moving seasonalities (2022)
  12. Tucker S. McElroy, James A. Livsey: Ecce Signum: An R Package for Multivariate Signal Extraction and Time Series Analysis (2022) arXiv
  13. Wei, Baolei; Xie, Naiming: On unified framework for continuous-time grey models: an integral matching perspective (2022)
  14. Adithi R. Upadhya, Pratyush Agrawal, Sreekanth Vakacherla, Meenakshi Kushwaha: pollucheck v1.0: A package to explore open-source air pollution data (2021) not zbMATH
  15. Arlt, Josef; Trcka, Peter: Automatic SARIMA modeling and forecast accuracy (2021)
  16. Arnerić, Josip: Multiple STL decomposition in discovering a multi-seasonality of intraday trading volume (2021)
  17. Ben O’Neill: Gaussian ARMA models in the ts.extend package (2021) arXiv
  18. Cadena, Meitner; Denuit, Michel: A new measure of mortality differentials based on precedence probability (2021)
  19. David Salinas, Valentin Flunkert, Jan Gasthaus: DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks (2021) arXiv
  20. Eckert, Florian; Hyndman, Rob J.; Panagiotelis, Anastasios: Forecasting Swiss exports using Bayesian forecast reconciliation (2021)

1 2 3 ... 6 7 8 next