CHOLMOD

Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. CHOLMOD is a set of routines for factorizing sparse symmetric positive definite matrices of the form A or AAT, updating/downdating a sparse Cholesky factorization, solving linear systems, updating/downdating the solution to the triangular system Lx = b, and many other sparse matrix functions for both symmetric and unsymmetric matrices. Its supernodal Cholesky factorization relies on LAPACK and the Level-3 BLAS, and obtains a substantial fraction of the peak performance of the BLAS. Both real and complex matrices are supported. CHOLMOD is written in ANSI/ISO C, with both C and MATLABTM interfaces. It appears in MATLAB 7.2 as x = A when A is sparse symmetric positive definite, as well as in several other sparse matrix functions. (Source: http://dl.acm.org/)


References in zbMATH (referenced in 113 articles , 1 standard article )

Showing results 1 to 20 of 113.
Sorted by year (citations)

1 2 3 4 5 6 next

  1. Bastian, Peter; Scheichl, Robert; Seelinger, Linus; Strehlow, Arne: Multilevel spectral domain decomposition (2022)
  2. De Marchi, Alberto: On a primal-dual Newton proximal method for convex quadratic programs (2022)
  3. Li, Xuan; Fang, Yu; Li, Minchen; Jiang, Chenfanfu: BFEMP: interpenetration-free MPM-FEM coupling with barrier contact (2022)
  4. Antonietti, Paola F.; De Ponti, Jacopo; Formaggia, Luca; Scotti, Anna: Preconditioning techniques for the numerical solution of flow in fractured porous media (2021)
  5. Cier, Roberto J.; Rojas, Sergio; Calo, Victor M.: Automatically adaptive, stabilized finite element method via residual minimization for heterogeneous, anisotropic advection-diffusion-reaction problems (2021)
  6. Hrga, Timotej; Povh, Janez: \textttMADAM: a parallel exact solver for max-cut based on semidefinite programming and ADMM (2021)
  7. Kozdon, Jeremy E.; Erickson, Brittany A.; Wilcox, Lucas C.: Hybridized summation-by-parts finite difference methods (2021)
  8. Luo, Zhao Tang; Sang, Huiyan; Mallick, Bani: A Bayesian contiguous partitioning method for learning clustered latent variables (2021)
  9. Meny, Janos; Rumpf, Martin; Sassen, Josua: A phase-field approach to variational hierarchical surface segmentation (2021)
  10. Rojas, Sergio; Pardo, David; Behnoudfar, Pouria; Calo, Victor M.: Goal-oriented adaptivity for a conforming residual minimization method in a dual discontinuous Galerkin norm (2021)
  11. Van Niekerk, J., Bakka, H., Rue, H., Schenk, O. : New Frontiers in Bayesian Modeling Using the INLA Package in R (2021) not zbMATH
  12. Xi, Chenyang; Zheng, Hui: Improving the generalized Bloch mode synthesis method using algebraic condensation (2021)
  13. Xu, Xiao; Glusa, Christian; D’Elia, Marta; Foster, John T.: A FETI approach to domain decomposition for meshfree discretizations of nonlocal problems (2021)
  14. Anita K. Nandi, Tim C. D. Lucas, Rohan Arambepola, Peter Gething, Daniel J. Weiss: disaggregation: An R Package for Bayesian Spatial Disaggregation Modelling (2020) arXiv
  15. Ben Hermans, Andreas Themelis, Panagiotis Patrinos: QPALM: A Proximal Augmented Lagrangian Method for Nonconvex Quadratic Programs (2020) arXiv
  16. Calo, Victor M.; Ern, Alexandre; Muga, Ignacio; Rojas, Sergio: An adaptive stabilized conforming finite element method via residual minimization on dual discontinuous Galerkin norms (2020)
  17. Cambier, Léopold; Chen, Chao; Boman, Erik G.; Rajamanickam, Sivasankaran; Tuminaro, Raymond S.; Darve, Eric: An algebraic sparsified nested dissection algorithm using low-rank approximations (2020)
  18. Glusa, Christian; Boman, Erik G.; Chow, Edmond; Rajamanickam, Sivasankaran; Szyld, Daniel B.: Scalable asynchronous domain decomposition solvers (2020)
  19. Hartwig Anzt, Terry Cojean, Yen-Chen Chen, Goran Flegar, Fritz Göbel, Thomas Grützmacher, Pratik Nayak, Tobias Ribizel, Yu-Hsiang Tsai: Ginkgo: A high performance numerical linear algebra library (2020) not zbMATH
  20. Klockiewicz, Bazyli; Darve, Eric: Sparse hierarchical preconditioners using piecewise smooth approximations of eigenvectors (2020)

1 2 3 4 5 6 next