DOLFIN is a C++/Python library that functions as the main user interface of FEniCS. A large part of the functionality of FEniCS is implemented as part of DOLFIN. It provides a problem solving environment for models based on partial differential equations and implements core parts of the functionality of FEniCS, including data structures and algorithms for computational meshes and finite element assembly. To provide a simple and consistent user interface, DOLFIN wraps the functionality of other FEniCS components and external software, and handles the communication between these components.

References in zbMATH (referenced in 201 articles , 1 standard article )

Showing results 1 to 20 of 201.
Sorted by year (citations)

1 2 3 ... 9 10 11 next

  1. Hendy, A. S.; van Bockstal, K.: A solely time-dependent source reconstruction in a multiterm time-fractional order diffusion equation with non-smooth solutions (2022)
  2. Hendy, A. S.; Van Bockstal, K.: On a reconstruction of a solely time-dependent source in a time-fractional diffusion equation with non-smooth solutions (2022)
  3. Iuorio, Annalisa; Jankowiak, Gaspard; Szmolyan, Peter; Wolfram, Marie-Therese: A PDE model for unidirectional flows: stationary profiles and asymptotic behaviour (2022)
  4. Joshaghani, M. S.; Girault, V.; Riviere, B.: A vertex scheme for two-phase flow in heterogeneous media (2022)
  5. Kincl, Ondřej; Pavelka, Michal; Maršík, František; Sedláček, Miroslav: Theoretical analysis of rolling fluid turbines (2022)
  6. Kyas, Svetlana; Volpatto, Diego; Saar, Martin O.; Leal, Allan M. M.: Accelerated reactive transport simulations in heterogeneous porous media using Reaktoro and Firedrake (2022)
  7. Mesenev, P. R.; Chebotarev, A. Yu.: Analysis of an optimization method for solving the problem of complex heat transfer with Cauchy boundary conditions (2022)
  8. Milz, Johannes; Ulbrich, Michael: An approximation scheme for distributionally robust PDE-constrained optimization (2022)
  9. Nhu, Vu Huu: Levenberg-Marquardt method for ill-posed inverse problems with possibly non-smooth forward mappings between Banach spaces (2022)
  10. Roman Parise; Georgios Is. Detorakis: OpenPelt: Python Framework for Thermoelectric Temperature Control System Development (2022) not zbMATH
  11. Scroggs et al.: Basix: a runtime finite element basis evaluation library (2022) not zbMATH
  12. van Bockstal, Karel; Marin, Liviu: Finite element method for the reconstruction of a time-dependent heat source in isotropic thermoelasticity systems of type-III (2022)
  13. Xie, Jiaxi; Ehmann, Kornel; Cao, Jian: MetaFEM: a generic FEM solver by meta-expressions (2022)
  14. Zhao, Han; Liu, Xiangbei; Fletcher, Andrew H.; Xiang, Ru; Hwang, John T.; Kamensky, David: An open-source framework for coupling non-matching isogeometric shells with application to aerospace structures (2022)
  15. Banjai, Lehel; Lord, Gabriel; Molla, Jeta: Strong convergence of a Verlet integrator for the semilinear stochastic wave equation (2021)
  16. Benjamin Rodenberg, Ishaan Desai, Richard Hertrich, Alexander Jaust, Benjamin Uekermann: FEniCS-preCICE: Coupling FEniCS to other simulation software (2021) not zbMATH
  17. Briddon, Chad; Burrage, Clare; Moss, Adam; Tamosiunas, Andrius: SELCIE: a tool for investigating the chameleon field of arbitrary sources (2021)
  18. Clason, Christian; Kunisch, Karl; Trautmann, Philip: Optimal control of the principal coefficient in a scalar wave equation (2021)
  19. Clason, Christian; Nhu, Vu Huu; Rösch, Arnd: Optimal control of a non-smooth quasilinear elliptic equation (2021)
  20. Farrell, Patrick E.; Knepley, Matthew G.; Mitchell, Lawrence; Wechsung, Florian: PCPATCH. Software for the topological construction of multigrid relaxation methods (2021)

1 2 3 ... 9 10 11 next