HypExp 2, Expanding hypergeometric functions about half-integer parameters. In this article, we describe a new algorithm for the expansion of hypergeometric functions about half-integer parameters. The implementation of this algorithm for certain classes of hypergeometric functions in the already existing Mathematica package HypExp is described. Examples of applications in Feynman diagrams with up to four loops are given. (Source: http://cpc.cs.qub.ac.uk/summaries/)

References in zbMATH (referenced in 61 articles , 1 standard article )

Showing results 1 to 20 of 61.
Sorted by year (citations)

1 2 3 4 next

  1. Lyubovitskij, Valery E.; Wunder, Fabian; Zhevlakov, Alexey S.: New ideas for handling of loop and angular integrals in D-dimensions in QCD (2021)
  2. Abreu, Samuel; Britto, Ruth; Duhr, Claude; Gardi, Einan; Matthew, James: From positive geometries to a coaction on hypergeometric functions (2020)
  3. Bissi, Agnese; Dey, Parijat; Hansen, Tobias: Dispersion relation for CFT four-point functions (2020)
  4. Bytev, Vladimir V.; Kniehl, Bernd A.: Derivatives of any Horn-type hypergeometric functions with respect to their parameters (2020)
  5. de Leeuw, Marius; Eden, Burkhard; le Plat, Dennis; Meier, Tim; Sfondrini, Alessandro: Multi-particle finite-volume effects for hexagon tessellations (2020)
  6. Hatefi, Ehsan: On BPS world volume, RR couplings, and their (\alpha^\prime) corrections in type IIB (2020)
  7. Li, Ye; Neill, Duff; Zhu, Hua Xing: An exponential regulator for rapidity divergences (2020)
  8. Procházka, Vladimír; Söderberg, Alexander: Composite operators near the boundary (2020)
  9. Artz, Johannes; Harlander, Robert V.; Lange, Fabian; Neumann, Tobias; Prausa, Mario: Results and techniques for higher order calculations within the gradient-flow formalism (2019)
  10. Bissi, Agnese; Hansen, Tobias; Söderberg, Alexander: Analytic bootstrap for boundary CFT (2019)
  11. Bourjaily, Jacob L.; Dulat, Falko; Panzer, Erik: Manifestly dual-conformal loop integration (2019)
  12. Tarasov, O. V.: Using functional equations to calculate Feynman integrals (2019)
  13. Tarasov, O. V.: Massless on-shell box integral with arbitrary powers of propagators (2018)
  14. Bosma, Jorrit; Sogaard, Mads; Zhang, Yang: Maximal cuts in arbitrary dimension (2017)
  15. Frellesvig, Hjalte; Papadopoulos, Costas G.: Cuts of Feynman integrals in Baikov representation (2017)
  16. Li, Hai Tao; Wang, Jian: Next-to-next-to-leading order (N)-jettiness soft function for one massive colored particle production at hadron colliders (2017)
  17. Michelangelo Preti: WiLE: a Mathematica package for weak coupling expansion of Wilson loops in ABJ(M) theory (2017) arXiv
  18. Muselli, Claudio; Forte, Stefano; Ridolfi, Giovanni: Combined threshold and transverse momentum resummation for inclusive observables (2017)
  19. S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, J. Schlenk, T. Zirke: pySecDec: a toolbox for the numerical evaluation of multi-scale integrals (2017) arXiv
  20. Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido: Virasoro vacuum block at next-to-leading order in the heavy-light limit (2016)

1 2 3 4 next