OR-Library

OR-Library is a collection of test data sets for a variety of Operations Research (OR) problems. These test data sets can be accessed via the WWW using the links below. OR-Library was originally described in J.E.Beasley, ”OR-Library: distributing test problems by electronic mail”, Journal of the Operational Research Society 41(11) (1990) pp1069-1072.


References in zbMATH (referenced in 661 articles , 1 standard article )

Showing results 1 to 20 of 661.
Sorted by year (citations)

1 2 3 ... 32 33 34 next

  1. Catanzaro, Daniele; Coniglio, Stefano; Furini, Fabio: On the exact separation of cover inequalities of maximum-depth (2022)
  2. Iori, Manuel; de Lima, Vinícius Loti; Martello, Silvano; Monaci, Michele: 2DPackLib: a two-dimensional cutting and packing library (2022)
  3. Martí, Rafael; Martínez-Gavara, Anna; Pérez-Peló, Sergio; Sánchez-Oro, Jesús: A review on discrete diversity and dispersion maximization from an or perspective (2022)
  4. McGarvey, Ronald G.; Thorsen, Andreas: Nested-solution facility location models (2022)
  5. Mladenović, Nenad; Pei, Jun; Pardalos, Panos M.; Urošević, Dragan: Less is more approach in optimization: a road to artificial intelligence (2022)
  6. Radman, Maryam; Eshghi, Kourosh: A novel decomposition approach to set covering problems by exploiting special structures (2022)
  7. Aboolian, Robert; Berman, Oded; Krass, Dmitry: Optimizing facility location and design (2021)
  8. Bahiense, Laura; Besso, Arthur; Tostas, Rogerio; Maculan, Nelson: Using multiflow formulations to solve the Steiner tree problem in graphs (2021)
  9. Bansal, Manish; Zhang, Yingqiu: Scenario-based cuts for structured two-stage stochastic and distributionally robust (p)-order conic mixed integer programs (2021)
  10. Bertsimas, Dimitris; Cory-Wright, Ryan; Pauphilet, Jean: A unified approach to mixed-integer optimization problems with logical constraints (2021)
  11. Chang, Jian; Wang, Lifang; Hao, Jin-Kao; Wang, Yang: Parallel iterative solution-based Tabu search for the obnoxious (p)-median problem (2021)
  12. Chauhan, Pinkey; Pant, Millie; Deep, Kusum: Gompertz PSO variants for knapsack and multi-knapsack problems (2021)
  13. Derpich, Ivan; Herrera, Carlos; Sepúlveda, Felipe; Ubilla, Hugo: Complexity indices for the multidimensional knapsack problem (2021)
  14. de Weerdt, Mathijs; Baart, Robert; He, Lei: Single-machine scheduling with release times, deadlines, setup times, and rejection (2021)
  15. Espejo, I.; Puerto, J.; Rodríguez-Chía, A. M.: A comparative study of different formulations for the capacitated discrete ordered median problem (2021)
  16. Gleixner, Ambros; Hendel, Gregor; Gamrath, Gerald; Achterberg, Tobias; Bastubbe, Michael; Berthold, Timo; Christophel, Philipp; Jarck, Kati; Koch, Thorsten; Linderoth, Jeff; Lübbecke, Marco; Mittelmann, Hans D.; Ozyurt, Derya; Ralphs, Ted K.; Salvagnin, Domenico; Shinano, Yuji: MIPLIB 2017: data-driven compilation of the 6th mixed-integer programming library (2021)
  17. Haddadi, Salim: Iterated local search for consecutive block minimization (2021)
  18. Ikli, Sana; Mancel, Catherine; Mongeau, Marcel; Olive, Xavier; Rachelson, Emmanuel: The aircraft runway scheduling problem: a survey (2021)
  19. Iori, Manuel; de Lima, Vinícius L.; Martello, Silvano; Miyazawa, Flávio K.; Monaci, Michele: Exact solution techniques for two-dimensional cutting and packing (2021)
  20. Kaliszewski, I.; Miroforidis, J.: Cooperative multiobjective optimization with bounds on objective functions (2021)

1 2 3 ... 32 33 34 next