A general $\text{2D-} hp\text{-adaptive}$ Finite Element (FE) implementation in Fortran 90 is described. The implementation is based on an abstract data structure, which allows to incorporate the full $hp$-adaptivity of triangular and quadrilateral finite elements. The $h$-refinement strategies are based on $h2$-refinement of quadrilaterals and $h4$-refinement of triangles. For $p$-refinement we allow the approximation order to vary within any element. The mesh refinement algorithms are restricted to 1-irregular meshes. Anisotropic and geometric refinement of quadrilateral meshes is made possible by additionally allowing double constrained nodes in rectangles. The capabilities of this $hp$-adaptive FE package are demonstrated on various test problems.

References in zbMATH (referenced in 20 articles , 1 standard article )

Showing results 1 to 20 of 20.
Sorted by year (citations)

  1. Ahrabi, Behzad R.; Anderson, W. Kyle; Newman, James C.: An adjoint-based hp-adaptive stabilized finite-element method with shock capturing for turbulent flows (2017)
  2. Byfut, Andreas; Schröder, Andreas: Unsymmetric multi-level hanging nodes and anisotropic polynomial degrees in (H^1)-conforming higher-order finite element methods (2017)
  3. Devloo, Philippe R. B.; Farias, Agnaldo M.; Gomes, Sônia M.; de Siqueira, Denise: Two-dimensional (hp) adaptive finite element spaces for mixed formulations (2016)
  4. Zander, Nils; Bog, Tino; Elhaddad, Mohamed; Frischmann, Felix; Kollmannsberger, Stefan; Rank, Ernst: The multi-level (hp)-method for three-dimensional problems: dynamically changing high-order mesh refinement with arbitrary hanging nodes (2016)
  5. Díaz Calle, Jorge L.; Devloo, Philippe R. B.; Gomes, Sônia M.: Implementation of continuous (hp)-adaptive finite element spaces without limitations on hanging sides and distribution of approximation orders (2015)
  6. Zander, Nils; Bog, Tino; Kollmannsberger, Stefan; Schillinger, Dominik; Rank, Ernst: Multi-level (hp)-adaptivity: high-order mesh adaptivity without the difficulties of constraining hanging nodes (2015)
  7. Byfut, Andreas; Schröder, Andreas: (hp)-adaptive extended finite element method (2012)
  8. Czarny, Olivier; Huysmans, Guido: Bézier surfaces and finite elements for MHD simulations (2008)
  9. Pardo, D.; Demkowicz, L.: Integration of (hp)-adaptivity and a two-grid solver for elliptic problems (2006)
  10. Rachowicz, W.; Pardo, D.; Demkowicz, L.: Fully automatic (hp)-adaptivity in three dimensions (2006)
  11. Walsh, Timothy; Demkowicz, Leszek: (hp) boundary element modeling of the external human auditory system -- goal-oriented adaptivity with multiple load vectors. (2003)
  12. Demkowicz, L.; Bajer, A.: Conservative discretization of contact/impact problems for nearly rigid bodies (2001)
  13. Melenk, J. M.; Gerdes, K.; Schwab, Ch.: Fully discrete (hp)-finite elements: Fast quadrature (2001)
  14. Werder, T.; Gerdes, K.; Schötzau, Dominik; Schwab, Christoph: (hp)-discontinuous Galerkin time stepping for parabolic problems (2001)
  15. Demkowicz, L.; Monk, P.; Vardapetyan, L.; Rachowicz, W.: de Rham diagram for (hp) finite element spaces (2000)
  16. Rachowicz, W.; Demkowicz, L.: An (hp)-adaptive finite element method for electromagnetics. I: Data structure and constrained approximation (2000)
  17. Schwab, Christoph; Suri, Manil: Mixed (hp) finite element methods for Stokes and non-Newtonian flow (1999)
  18. Demkowicz, L.; Gerdes, K.; Schwab, C.; Bajer, A.; Walsh, T.: HP90: A general and flexible Fortran 90 (hp)-FE code (1998)
  19. Gerdes, K.: A summary of infinite element formulations for exterior Helmholtz problems (1998)
  20. Jacob, B.; Dragan, V.; Pritchard, A. J.: Infinite dimensional time-varying systems with nonlinear output feedback (1995)