CPLEX
IBM® ILOG® CPLEX® offers C, C++, Java, .NET, and Python libraries that solve linear programming (LP) and related problems. Specifically, it solves linearly or quadratically constrained optimization problems where the objective to be optimized can be expressed as a linear function or a convex quadratic function. The variables in the model may be declared as continuous or further constrained to take only integer values.
Keywords for this software
References in zbMATH (referenced in 2551 articles , 1 standard article )
Showing results 1 to 20 of 2551.
Sorted by year (- Alfieri, Arianna; Matta, Andrea; Pastore, Erica: The time buffer approximated buffer allocation problem: a row-column generation approach (2020)
- Aparicio, Juan; Kapelko, Magdalena; Monge, Juan F.: A well-defined composite indicator: an application to corporate social responsibility (2020)
- Arbex Valle, Cristiano; Beasley, John E.: Order batching using an approximation for the distance travelled by pickers (2020)
- Atashi Khoei, Arsham; Süral, Haldun; Tural, Mustafa Kemal: Multi-facility Green Weber problem (2020)
- Basso, S.; Ceselli, Alberto; Tettamanzi, Andrea: Random sampling and machine learning to understand good decompositions (2020)
- Bautista-Valhondo, Joaquín; Alfaro-Pozo, Rocío: Mixed integer linear programming models for flow shop scheduling with a demand plan of job types (2020)
- Bayless, Sam; Kodirov, Nodir; Iqbal, Syed M.; Beschastnikh, Ivan; Hoos, Holger H.; Hu, Alan J.: Scalable constraint-based virtual data center allocation (2020)
- Bereg, Sergey; Mojica, Luis Gerardo; Morales, Linda; Sudborough, Hal: Constructing permutation arrays using partition and extension (2020)
- Berger, J.; Lo, N.; Barkaoui, M.: QUEST -- a new quadratic decision model for the multi-satellite scheduling problem (2020)
- Bertsimas, Dimitris; Lamperski, Jourdain; Pauphilet, Jean: Certifiably optimal sparse inverse covariance estimation (2020)
- Bettiol, Enrico; Létocart, Lucas; Rinaldi, Francesco; Traversi, Emiliano: A conjugate direction based simplicial decomposition framework for solving a specific class of dense convex quadratic programs (2020)
- Borenich, Andrea; Greistorfer, Peter; Reimann, Marc: Model-based production cost estimation to support bid processes: an automotive case study (2020)
- Borghini, Fabrizio; Méndez-Díaz, Isabel; Zabala, Paula: An exact algorithm for the edge coloring by total labeling problem (2020)
- Briheche, Yann; Barbaresco, Frederic; Bennis, Fouad; Chablat, Damien: Branch-and-bound method for just-in-time optimization of radar search patterns (2020)
- Briskorn, Dirk; Zey, Lennart: Interference aware scheduling of triple-crossover-cranes (2020)
- Chen, Qian Matteo; Finzi, Alberto; Mancini, Toni; Melatti, Igor; Tronci, Enrico: MILP, pseudo-Boolean, and OMT solvers for optimal fault-tolerant placements of relay nodes in mission critical wireless networks (2020)
- Coey, Chris; Lubin, Miles; Vielma, Juan Pablo: Outer approximation with conic certificates for mixed-integer convex problems (2020)
- Costalonga, João Paulo: Toroidal boards and code covering (2020)
- Dahlbeck, Mirko; Fischer, Anja; Fischer, Frank: Decorous combinatorial lower bounds for row layout problems (2020)
- D’Ambrosio, Claudia; Liberti, Leo; Poirion, Pierre-Louis; Vu, Ky: Random projections for quadratic programs (2020)