hyper.deal
hyper.deal: An efficient, matrix-free finite-element library for high-dimensional partial differential equations. This work presents the efficient, matrix-free finite-element library hyper.deal for solving partial differential equations in two to six dimensions with high-order discontinuous Galerkin methods. It builds upon the low-dimensional finite-element library deal.II to create complex low-dimensional meshes and to operate on them individually. These meshes are combined via a tensor product on the fly and the library provides new special-purpose highly optimized matrix-free functions exploiting domain decomposition as well as shared memory via MPI-3.0 features. Both node-level performance analyses and strong/weak-scaling studies on up to 147,456 CPU cores confirm the efficiency of the implementation. Results of the library hyper.deal are reported for high-dimensional advection problems and for the solution of the Vlasov--Poisson equation in up to 6D phase space.
Keywords for this software
References in zbMATH (referenced in 4 articles )
Showing results 1 to 4 of 4.
Sorted by year (- Arndt, Daniel; Bangerth, Wolfgang; Blais, Bruno; Fehling, Marc; Gassmöller, Rene; Heister, Timo; Heltai, Luca; Köcher, Uwe; Kronbichler, Martin; Maier, Matthias; Munch, Peter; Pelteret, Jean-Paul; Proell, Sebastian; Simon, Konrad; Turcksin, Bruno; Wells, David; Zhang, Jiaqi: The \textttdeal.II library, Version 9.3 (2021)
- Munch, Peter; Kormann, Katharina; Kronbichler, Martin: hyper.deal: an efficient, matrix-free finite-element library for high-dimensional partial differential equations (2021)
- Arndt, Daniel; Bangerth, Wolfgang; Blais, Bruno; Clevenger, Thomas C.; Fehling, Marc; Grayver, Alexander V.; Heister, Timo; Heltai, Luca; Kronbichler, Martin; Maier, Matthias; Munch, Peter; Pelteret, Jean-Paul; Rastak, Reza; Tomas, Ignacio; Turcksin, Bruno; Wang, Zhuoran; Wells, David: The deal.II library, version 9.2 (2020)
- Jodlbauer, D.; Langer, U.; Wick, T.: Matrix-free multigrid solvers for phase-field fracture problems (2020)