Menu
  • About & Contact
  • Feedback
  • Contribute
  • Help
  • zbMATH

swMATH

swmath-logo
  • Search
  • Advanced search
  • Browse
  • browse software by name
  • browse software by keywords
  • browse software by MSC
  • browse software by types

scca

scca-package: Sparse canonical covariance analysis. scca is used to perform sparse canonical covariance analysis (SCCA). scca3 is the extension of scca to address 3 sets of variables on the same set of subjects.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

  • generalized linear model
  • sparsity
  • variable selection
  • sparse canonical correlation analysis (SCCA)
  • penalized likelihood estimation
  • prediction
  • sparse canonical correlation analysis
  • community structure
  • high-dimension
  • hierarchical generalized linear model
  • hierarchical likelihood
  • high-dimensional genomic data
  • partial correlation
  • unobservable
  • unbounded penalty
  • multivariate regression
  • adjusted profile h-likelihood
  • gene association networks
  • random-effect model
  • high-dimensional data analysis
  • selection consistency
  • maximum likelihood estimator
  • canonical covariance analysis
  • random effect
  • SCAD penalty
  • oracle property
  • h-likelihood

  • URL: rdrr.io/github/tomwhoo...
  • InternetArchive
  • Authors: Woojoo Lee, Donghwan Lee, Youngjo Lee, Yudi Pawitan
  • Dependencies: R

  • Add information on this software.


  • Related software:
  • PMA
  • cmprsk
  • CCA
  • R
  • glasso
  • frailtyHL
  • Knorm
  • GPLP
  • Ebimage
  • ElemStatLearn
  • Show more...
  • dynamicTreeCut
  • MIM
  • clusfind
  • RGCCA
  • glmnet
  • Show less...

References in zbMATH (referenced in 7 articles , 1 standard article )

Showing results 1 to 7 of 7.
y Sorted by year (citations)

  1. Lee, Woojoo; Do Ha, Il; Noh, Maengseok; Lee, Donghwan; Lee, Youngjo: A review on recent advances and applications of h-likelihood method (2021)
  2. Wang, Wenjia; Zhou, Yi-Hui: Eigenvector-based sparse canonical correlation analysis: fast computation for estimation of multiple canonical vectors (2021)
  3. Kwon, Sunghoon; Oh, Seungyoung; Lee, Youngjo: The use of random-effect models for high-dimensional variable selection problems (2016)
  4. Ng, Chi Tim; Oh, Seungyoung; Lee, Youngjo: Going beyond oracle property: selection consistency and uniqueness of local solution of the generalized linear model (2016)
  5. Wang, Y. X. Rachel; Jiang, Keni; Feldman, Lewis J.; Bickel, Peter J.; Huang, Haiyan: Inferring gene-gene interactions and functional modules using sparse canonical correlation analysis (2015)
  6. Lee, Youngjo; Oh, Hee-Seok: A new sparse variable selection via random-effect model (2014)
  7. Lee, Woojoo; Lee, Donghwan; Lee, Youngjo; Pawitan, Yudi: Sparse canonical covariance analysis for high-throughput data (2011)

  • Article statistics & filter:

  • Search for articles
  • MSC classification / top
    • Top MSC classes
      • 62 Statistics
      • 92 Applications of...

  • Publication year
    • 2010 - today
    • 2005 - 2009
    • 2000 - 2004
    • before 2000
  • Terms & Conditions
  • Imprint
  • Privacy Policy