Generalized co-clustering analysis via regularized alternating least squares. Biclustering is an important exploratory analysis tool that simultaneously clusters rows (e.g., samples) and columns (e.g., variables) of a data matrix. Checkerboard-like biclusters reveal intrinsic associations between rows and columns. However, most existing methods rely on Gaussian assumptions and only apply to matrix data. In practice, non-Gaussian and/or multi-way tensor data are frequently encountered. A new CO-clustering method via Regularized Alternating Least Squares (CORALS) is proposed, which generalizes biclustering to non-Gaussian data and multi-way tensor arrays. Non-Gaussian data are modeled with single-parameter exponential family distributions and co-clusters are identified in the natural parameter space via sparse CANDECOMP/PARAFAC tensor decomposition. A regularized alternating (iteratively reweighted) least squares algorithm is devised for model fitting and a deflation procedure is exploited to automatically determine the number of co-clusters. Comprehensive simulation studies and three real data examples demonstrate the efficacy of the proposed method. The data and code are publicly available at

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

References in zbMATH (referenced in 1 article , 1 standard article )

Showing result 1 of 1.
Sorted by year (citations)

  1. Li, Gen: Generalized co-clustering analysis via regularized alternating least squares (2020)