goft
R package goft: Tests of Fit for some Probability Distributions. Goodness-of-fit tests for gamma, inverse Gaussian, log-normal, ’Weibull’, ’Frechet’, Gumbel, normal, multivariate normal, Cauchy, Laplace or double exponential, exponential and generalized Pareto distributions. Parameter estimators for gamma, inverse Gaussian and generalized Pareto distributions.
Keywords for this software
References in zbMATH (referenced in 5 articles , 1 standard article )
Showing results 1 to 5 of 5.
Sorted by year (- Azaïs, R.; Ferrigno, S.; Martinez, M.-J.: cvmgof: an R package for Cramér-von Mises goodness-of-fit tests in regression models (2022)
- Chaturvedi, Ajit; Bapat, Sudeep R.; Joshi, Neeraj: Sequential estimation of an inverse Gaussian mean with known coefficient of variation (2022)
- Justine Lequesne, Philippe Regnault: vsgoftest: An R Package for Goodness-of-Fit Testing Based on Kullback-Leibler Divergence (2020) not zbMATH
- Jana, Nabakumar; Kumar, Somesh: Ordered classification rules for inverse Gaussian populations with unknown parameters (2019)
- González-Estrada, E.; Villaseñor, J. A.: An R package for testing goodness of fit: goft (2018)