stm
R package stm: Estimation of the Structural Topic Model. The Structural Topic Model (STM) allows researchers to estimate topic models with document-level covariates. The package also includes tools for model selection, visualization, and estimation of topic-covariate regressions. Methods developed in Roberts et al (2014) <doi:10.1111/ajps.12103> and Roberts et al (2016) <doi:10.1080/01621459.2016.1141684>. Vignette is Roberts et al (2019) <doi:10.18637/jss.v091.i02>.
Keywords for this software
References in zbMATH (referenced in 8 articles , 1 standard article )
Showing results 1 to 8 of 8.
Sorted by year (- David Ardia, Keven Bluteau, Samuel Borms, Kris Boudt: The R package sentometrics to compute, aggregate and predict with textual sentiment (2021) arXiv
- Samuel Borms, David Ardia, Keven Bluteau, Kris Boudt, Jeroen Van Pelt, Andres Algaba: The R Package sentometrics to Compute, Aggregate, and Predict with Textual Sentiment (2021) not zbMATH
- Symitsi, Efthymia; Stamolampros, Panagiotis; Daskalakis, George; Korfiatis, Nikolaos: The informational value of employee online reviews (2021)
- Chung-hong Chan; Marius Sältzer: oolong: An R package for validating automated content analysis tools (2020) not zbMATH
- Jonas Rieger: ldaPrototype: A method in R to get a Prototype of multiple Latent Dirichlet Allocations (2020) not zbMATH
- Modesto Escobar, Luis Martinez-Uribe: Network Coincidence Analysis: The netCoin R Package (2020) not zbMATH
- Margaret Roberts; Brandon Stewart; Dustin Tingley: stm: An R Package for Structural Topic Models (2019) not zbMATH
- Benoit K, Watanabe K, Wang H, Nulty P, Obeng A, Müller S, Matsuo A: quanteda: An R package for the quantitative analysis of textual data (2018) not zbMATH