POT
POT: Python Optimal Transport. This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.
Keywords for this software
References in zbMATH (referenced in 28 articles , 1 standard article )
Showing results 1 to 20 of 28.
Sorted by year (- Bauer, Martin; Hartman, Emmanuel; Klassen, Eric: The square root normal field distance and unbalanced optimal transport (2022)
- Campbell, Steven; Leonard Wong, Ting-Kam: Functional portfolio optimization in stochastic portfolio theory (2022)
- Gao, Yihang; Ng, Michael K.: Wasserstein generative adversarial uncertainty quantification in physics-informed neural networks (2022)
- Allaire, Frédéric; Mallet, Vivien; Filippi, Jean-Baptiste: Novel method for a posteriori uncertainty quantification in wildland fire spread simulation (2021)
- Biau, Gérard; Sangnier, Maxime; Tanielian, Ugo: Some theoretical insights into Wasserstein GANs (2021)
- Burger, Martin; Kreusser, Lisa Maria; Totzeck, Claudia: Mean-field optimal control for biological pattern formation (2021)
- Catalano, Marta; Lijoi, Antonio; Prünster, Igor: Measuring dependence in the Wasserstein distance for Bayesian nonparametric models (2021)
- Divol, Vincent; Lacombe, Théo: Understanding the topology and the geometry of the space of persistence diagrams via optimal partial transport (2021)
- Flamary, Rémi; Courty, Nicolas; Gramfort, Alexandre; Alaya, Mokhtar Z.; Boisbunon, Aurélie; Chambon, Stanislas; Chapel, Laetitia; Corenflos, Adrien; Fatras, Kilian; Fournier, Nemo; Gautheron, Léo; Gayraud, Nathalie T. H.; Janati, Hicham; Rakotomamonjy, Alain; Redko, Ievgen; Rolet, Antoine; Schutz, Antony; Seguy, Vivien; Sutherland, Danica J.; Tavenard, Romain; Tong, Alexander; Vayer, Titouan: POT: Python optimal transport (2021)
- Giesselmann, Jan; Meyer, Fabian; Rohde, Christian: Error control for statistical solutions of hyperbolic systems of conservation laws (2021)
- Lanthaler, S.; Mishra, S.; Parés-Pulido, C.: Statistical solutions of the incompressible Euler equations (2021)
- Marti, Gautier; Goubet, Victor; Nielsen, Frank: cCorrGAN: conditional correlation GAN for learning empirical conditional distributions in the elliptope (2021)
- Myers, Aaron; Thiéry, Alexandre H.; Wang, Kainan; Bui-Thanh, Tan: Sequential ensemble transform for Bayesian inverse problems (2021)
- Wiqvist, Samuel; Golightly, Andrew; McLean, Ashleigh T.; Picchini, Umberto: Efficient inference for stochastic differential equation mixed-effects models using correlated particle pseudo-marginal algorithms (2021)
- Auricchio, Gennaro; Codegoni, Andrea; Gualandi, Stefano; Toscani, Giuseppe; Veneroni, Marco: The equivalence of Fourier-based and Wasserstein metrics on imaging problems (2020)
- Catalano, Marta; Lijoi, Antonio; Prünster, Igor: Approximation of Bayesian models for time-to-event data (2020)
- Delon, Julie; Desolneux, Agnès: A Wasserstein-type distance in the space of Gaussian mixture models (2020)
- Di Marino, Simone; Gerolin, Augusto: An optimal transport approach for the Schrödinger bridge problem and convergence of Sinkhorn algorithm (2020)
- Facca, Enrico; Daneri, Sara; Cardin, Franco; Putti, Mario: Numerical solution of Monge-Kantorovich equations via a dynamic formulation (2020)
- Fjordholm, U. S.; Lye, K.; Mishra, S.; Weber, F.: Statistical solutions of hyperbolic systems of conservation laws: numerical approximation (2020)