Macaulay2 package Book3264Examples -- Examples using M2 and Schubert2 to do intersection theory. This package consists almost entirely of example code for the main text and exercises of the book ’3264 & All That: Intersection Theory in Algebraic Geometry’ by Eisenbud and Harris. Most of the example code relies on the package Schubert2.

References in zbMATH (referenced in 97 articles , 1 standard article )

Showing results 1 to 20 of 97.
Sorted by year (citations)

1 2 3 4 5 next

  1. Antonelli, V.; Malaspina, F.: (H)-instanton bundles on three-dimensional polarized projective varieties (2022)
  2. Asgarli, Shamil; Ghioca, Dragos: A Bertini type theorem for pencils over finite fields (2022)
  3. Böhning, Christian; von Bothmer, Hans-Christian Graf; van Garrel, Michel: Prelog Chow groups of self-products of degenerations of cubic threefolds (2022)
  4. Garbagnati, Alice; Prieto Montañez, Yulieth: Order 3 symplectic automorphisms on (K3) surfaces (2022)
  5. Grzelakowski, Kacper: Type III contractions and quintic threefolds (2022)
  6. Hashimoto, Sachi; Honigs, Katrina; Lamarche, Alicia; Vogt, Isabel: A transcendental Brauer-Manin obstruction to weak approximation on a Calabi-Yau threefold (2022)
  7. Ilten, Nathan; Kelly, Tyler L.: Fano schemes of complete intersections in toric varieties (2022)
  8. Muratore, Giosuè; Schneider, Csaba: Effective computations of the Atiyah-Bott formula (2022)
  9. Rudnicki, Piotr; Weber, Andrzej: Characteristic classes of Borel orbits of square-zero upper-triangular matrices (2022)
  10. Améndola, C.; Gustafsson, L.; Kohn, K.; Marigliano, O.; Seigal, A.: The maximum likelihood degree of linear spaces of symmetric matrices (2021)
  11. Beheshti, Roya; Riedl, Eric: Linear subspaces of hypersurfaces (2021)
  12. Bettiol, Renato G.; Kummer, Mario; Mendes, Ricardo A. E.: Convex algebraic geometry of curvature operators (2021)
  13. Brazelton, Thomas: An introduction to (\mathbbA^1)-enumerative geometry. Based on lectures by Kirsten Wickelgren delivered at the LMS-CMI research school “Homotopy theory and arithmetic geometry -- motivic and Diophantine aspects” (2021)
  14. Chiodo, Alessandro: On the construction of the \textitŚrī Yantra (2021)
  15. Das, Nilkantha; Mukherjee, Ritwik: Counting planar curves in (\mathbbP^3) with degenerate singularities (2021)
  16. Eur, Christopher; Lim, Sung Hyun: Complete intersections with given Hilbert polynomials (2021)
  17. Fassarella, Thiago; Ferrer, Viviana; Gondim, Rodrigo: Developable cubics in (\mathbbP^4) and the Lefschetz locus in (\operatornameGOR(1, 5, 5, 1)) (2021)
  18. Kemeny, Michael: Universal secant bundles and syzygies of canonical curves (2021)
  19. Larson, Hannah K.: Normal bundles of lines on hypersurfaces (2021)
  20. Larson, Hannah K.: Universal degeneracy classes for vector bundles on (\mathbbP^1) bundles (2021)

1 2 3 4 5 next