GAKREM: A novel hybrid clustering algorithm We introduce a novel clustering algorithm named GAKREM (Genetic Algorithm K-means Logarithmic Regression Expectation Maximization) that combines the best characteristics of the K-means and EM algorithms but avoids their weaknesses such as the need to specify a priori the number of clusters, termination in local optima, and lengthy computations. To achieve these goals, genetic algorithms for estimating parameters and initializing starting points for the EM are used first. Second, the log-likelihood of each configuration of parameters and the number of clusters resulting from the EM is used as the fitness value for each chromosome in the population. The novelty of GAKREM is that in each evolving generation it efficiently approximates the log-likelihood for each chromosome using logarithmic regression instead of running the conventional EM algorithm until its convergence. Another novelty is the use of K-means to initially assign data points to clusters. The algorithm is evaluated by comparing its performance with the conventional EM algorithm, the K-means algorithm, and the likelihood cross-validation technique on several datasets.

References in zbMATH (referenced in 10 articles , 1 standard article )

Showing results 1 to 10 of 10.
Sorted by year (citations)

  1. Niu, Feng gao: Basic co-occurrence latent semantic vector space model (2019)
  2. Peng, Hong; Wang, Jun; Pérez-Jiménez, Mario J.; Riscos-Núñez, Agustín: An unsupervised learning algorithm for membrane computing (2015)
  3. Song, Wei; Liang, Jiu Zhen; Park, Soon Cheol: Fuzzy control GA with a novel hybrid semantic similarity strategy for text clustering (2014) ioport
  4. Chen, Ling; Zou, Ling-Jun; Tu, Li: A clustering algorithm for multiple data streams based on spectral component similarity (2012) ioport
  5. Niknam, Taher; Fard, Elahe Taherian; Ehrampoosh, Shervin; Rousta, Alireza: A new hybrid imperialist competitive algorithm on data clustering (2011) ioport
  6. Aliguliyev, Ramiz M.: Performance evaluation of density-based clustering methods (2009) ioport
  7. Campello, R. J. G. B.; Hruschka, E. R.: On comparing two sequences of numbers and its applications to clustering analysis (2009)
  8. Saha, Sriparna; Bandyopadhyay, Sanghamitra: A new point symmetry based fuzzy genetic clustering technique for automatic evolution of clusters (2009)
  9. Zheng, Hai-Tao; Kang, Bo-Yeong; Kim, Hong-Gee: Exploiting noun phrases and semantic relationships for text document clustering (2009) ioport
  10. Nguyen, Cao D.; Cios, Krzysztof J.: GAKREM: A novel hybrid clustering algorithm (2008)