rmgarch
R package rmgarch: Multivariate GARCH Models. Feasible multivariate GARCH models including DCC, GO-GARCH and Copula-GARCH.
Keywords for this software
References in zbMATH (referenced in 13 articles )
Showing results 1 to 13 of 13.
Sorted by year (- Nagler, Thomas; Krüger, Daniel; Min, Aleksey: Stationary vine copula models for multivariate time series (2022)
- Regis, Marta; Serra, Paulo; van den Heuvel, Edwin R.: Random autoregressive models: a structured overview (2022)
- Klaus Nordhausen, Markus Matilainen, Jari Miettinen, Joni Virta, Sara Taskinen: Dimension Reduction for Time Series in a Blind Source Separation Context Using R (2021) not zbMATH
- Philippe Rast; Stephen Martin: bmgarch: An R-Package for Bayesian Multivariate GARCH models (2021) not zbMATH
- Kreuzer, Alexander; Czado, Claudia: Efficient Bayesian inference for nonlinear state space models with univariate autoregressive state equation (2020)
- David Ardia; Kris Boudt; Leopoldo Catania: Generalized Autoregressive Score Models in R: The GAS Package (2019) not zbMATH
- Ardia, David; Bolliger, Guido; Boudt, Kris; Gagnon-Fleury, Jean-Philippe: The impact of covariance misspecification in risk-based portfolios (2017)
- Isogai, Takashi: Analysis of dynamic correlation of Japanese stock returns with network clustering (2017)
- Fengler, Matthias R.; Okhrin, Ostap: Managing risk with a realized copula parameter (2016)
- Kim, Jong-Min; Jung, Hojin: Linear time-varying regression with copula-DCC-GARCH models for volatility (2016)
- Okhrin, Ostap: Lévy copulae for financial returns (2016)
- Ranković, Vladimir; Drenovak, Mikica; Urosevic, Branko; Jelic, Ranko: Mean-univariate GARCH VaR portfolio optimization: actual portfolio approach (2016)
- Ku, Yu-Cheng; Bloomfield, Peter; Ghosh, Sujit K.: A flexible observed factor model with separate dynamics for the factor volatilities and their correlation matrix (2014)