StreamKM++ computes a small weighted sample of the data stream,called the coreset of the data stream. A new data structure called coreset tree is developed in order to significantly speed up the time necessary for sampling non-uniformly during the coreset construction. After the coreset is extracted from the data stream, a weighted k-means algorithm is applied on the coreset to get the final clusters for the original stream data.

References in zbMATH (referenced in 14 articles , 2 standard articles )

Showing results 1 to 14 of 14.
Sorted by year (citations)

  1. Feldman, Dan; Schmidt, Melanie; Sohler, Christian: Turning big data into tiny data: constant-size coresets for (k)-means, PCA, and projective clustering (2020)
  2. Kazakovtsev, Lev; Rozhnov, Ivan; Shkaberina, Guzel; Orlov, Viktor: (k)-means genetic algorithms with greedy genetic operators (2020)
  3. Garecki, Janusz: Canonical superenergy and angular supermomentum complexes in general relativity and some of their applications (2018)
  4. Sangam, Ravi Sankar; Om, Hari: Equi-Clustream: a framework for clustering time evolving mixed data (2018)
  5. Khoshrou, Samaneh; Cardoso, Jaime S.; Teixeira, Luís F.: Learning from evolving video streams in a multi-camera scenario (2015) ioport
  6. Amini, Amineh; Wah, Teh Ying; Saboohi, Hadi: On density-based data streams clustering algorithms: a survey (2014) ioport
  7. Cai, Ruichu; Zhang, Zhenjie; Tung, Anthony K. H.; Dai, Chenyun; Hao, Zhifeng: A general framework of hierarchical clustering and its applications (2014) ioport
  8. Miller, Zachary; Dickinson, Brian; Deitrick, William; Hu, Wei; Wang, Alex Hai: Twitter spammer detection using data stream clustering (2014) ioport
  9. Wu, Zhenyu; Zou, Ming: An incremental community detection method for social tagging systems using locality-sensitive hashing (2014) ioport
  10. Feldman, Dan; Feigin, Micha; Sochen, Nir: Learning big (image) data via coresets for dictionaries (2013)
  11. Fichtenberger, Hendrik; Gillé, Marc; Schmidt, Melanie; Schwiegelshohn, Chris; Sohler, Christian: BICO: BIRCH meets coresets for (k)-means clustering (2013)
  12. Leiva, Luis A.; Vidal, Enrique: Warped (K)-means: an algorithm to cluster sequentially-distributed data (2013) ioport
  13. Ackermann, Marcel R.; Märtens, Marcus; Raupach, Christoph; Swierkot, Kamil; Lammersen, Christiane; Sohler, Christian: StreamKM++, a clustering algorithm for data streams (2012)
  14. Ackermann, Marcel R.; Raupach, Christoph; Lammersen, Christiane; Sohler, Christian; Märtens, Marcus; Swierkot, Kamil: StreamKM++: a clustering algorithm for data streams (2010)