iRNAm5C-PseDNC

iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition. Occurring at cytosine (C) of RNA, 5-methylcytosine (m5C) is an important post-transcriptional modification (PTCM). The modification plays significant roles in biological processes by regulating RNA metabolism in both eukaryotes and prokaryotes. It may also, however, cause cancers and other major diseases. Given an uncharacterized RNA sequence that contains many C residues, can we identify which one of them can be of m5C modification, and which one cannot? It is no doubt a crucial problem, particularly with the explosive growth of RNA sequences in the postgenomic age. Unfortunately, so far no user-friendly web-server whatsoever has been developed to address such a problem. To meet the increasingly high demand from most experimental scientists working in the area of drug development, we have developed a new predictor called iRNAm5C-PseDNC by incorporating ten types of physical-chemical properties into pseudo dinucleotide composition via the auto/cross-covariance approach. Rigorous jackknife tests show that its anticipated accuracy is quite high. For most experimental scientists’ convenience, a user-friendly web-server for the predictor has been provided at http://www.jci-bioinfo.cn/iRNAm5C-PseDNC along with a step-by-step user guide, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved. It has not escaped our notice that the approach presented here can also be used to deal with many other problems in genome analysis.


References in zbMATH (referenced in 22 articles )

Showing results 1 to 20 of 22.
Sorted by year (citations)

1 2 next

  1. Ahmad, Jamal; Hayat, Maqsood: MFSC: multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou’s PseAAC components (2019)
  2. Bai, Xiaolu; Chen, Xiaolin: Rational design, conformational analysis and membrane-penetrating dynamics study of Bac2A-derived antimicrobial peptides against gram-positive clinical strains isolated from pyemia (2019)
  3. Hussain, Waqar; Khan, Yaser Daanial; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: SPrenylC-PseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins (2019)
  4. Jia, Jianhua; Li, Xiaoyan; Qiu, Wangren; Xiao, Xuan; Chou, Kuo-Chen: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC (2019)
  5. Khan, Yaser Daanial; Jamil, Mehreen; Hussain, Waqar; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: pSSbond-PseAAC: prediction of disulfide bonding sites by integration of PseAAC and statistical moments (2019)
  6. Lu, Fuhua; Zhu, Maoshu; Lin, Ying; Zhong, Hongbin; Cai, Lei; He, Lin; Chou, Kuo-Chen: The preliminary efficacy evaluation of the CTLA-4-ig treatment against lupus nephritis through \textitin-silico analyses (2019)
  7. Pan, Yi; Wang, Shiyuan; Zhang, Qi; Lu, Qianzi; Su, Dongqing; Zuo, Yongchun; Yang, Lei: Analysis and prediction of animal toxins by various Chou’s pseudo components and reduced amino acid compositions (2019)
  8. Rout, Subhashree; Mahapatra, Rajani Kanta: \textitInsilico analysis of \textitplasmodiumfalciparum CDPK5 protein through molecular modeling, docking and dynamics (2019)
  9. Tahir, Muhammad; Tayara, Hilal; Chong, Kil To: iRNA-PseKNC(2methyl): identify RNA 2’-O-methylation sites by convolution neural network and Chou’s pseudo components (2019)
  10. Wang, Lidong; Zhang, Ruijun; Mu, Yashuang: Fu-SulfPred: identification of protein S-sulfenylation sites by fusing forests via Chou’s general PseAAC (2019)
  11. Zhao, Xiaowei; Zhang, Ye; Ning, Qiao; Zhang, Hongrui; Ji, Jinchao; Yin, Minghao: Identifying N(^6)-methyladenosine sites using extreme gradient boosting system optimized by particle swarm optimizer (2019)
  12. Akbar, Shahid; Hayat, Maqsood: iMethyl-STTNC: identification of N(^6)-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences (2018)
  13. Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen: pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC (2018)
  14. Chiu, Jimmy Ka Ho; Dillon, Tharam S.; Chen, Yi-Ping Phoebe: Large-scale frequent stem pattern mining in RNA families (2018)
  15. Jia, Cangzhi; Yang, Qing; Zou, Quan: NucPosPred: predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC (2018)
  16. Liang, Yunyun; Zhang, Shengli: Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou’s general PseAAC via Kullback-Leibler divergence (2018)
  17. Mei, Juan; Fu, Yi; Zhao, Ji: Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition (2018)
  18. Sabooh, M. Fazli; Iqbal, Nadeem; Khan, Mukhtaj; Khan, Muslim; Maqbool, H. F.: Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC (2018)
  19. Srivastava, Abhishikha; Kumar, Ravindra; Kumar, Manish: BlaPred: predicting and classifying (\beta)-lactamase using a 3-tier prediction system via Chou’s general PseAAC (2018)
  20. Zhang, Shengli; Duan, Xin: Prediction of protein subcellular localization with oversampling approach and Chou’s general PseAAC (2018)

1 2 next