COBRA: A parallelizable authenticated online cipher without block cipher inverse. We present a new, misuse-resistant scheme for online authenticated encryption, following the framework set forth by Fleischmann et al. (FSE 2012). Our scheme, COBRA, is roughly as efficient as the GCM mode of operation for nonce-based authenticated encryption, performing one block cipher call plus one finite field multiplication per message block in a parallelizable way. The major difference from GCM is that COBRA preserves privacy up to prefix under nonce repetition. However, COBRA only provides authenticity against nonce-respecting adversaries. As compared to COPA (ASIACRYPT 2013), our new scheme requires no block cipher inverse and hence enjoys provable security under a weaker assumption about the underlying block cipher. In addition, COBRA can possibly perform better than COPA on platforms where finite field multiplication can be implemented faster than the block cipher in use, since COBRA essentially replaces half of the block cipher calls in COPA with finite field multiplications.