iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach. Information about the interactions of drug compounds with proteins in cellular networking is very important for drug development. Unfortunately, all the existing predictors for identifying drug-protein interactions were trained by a skewed benchmark data-set where the number of non-interactive drug-protein pairs is overwhelmingly larger than that of the interactive ones. Using this kind of highly unbalanced benchmark data-set to train predictors would lead to the outcome that many interactive drug-protein pairs might be mispredicted as non-interactive. Since the minority interactive pairs often contain the most important information for drug design, it is necessary to minimize this kind of misprediction. In this study, we adopted the neighborhood cleaning rule and synthetic minority over-sampling technique to treat the skewed benchmark datasets and balance the positive and negative subsets. The new benchmark datasets thus obtained are called the optimized benchmark datasets, based on which a new predictor called iDrug-Target was developed that contains four sub-predictors: iDrug-GPCR, iDrug-Chl, iDrug-Ezy, and iDrug-NR, specialized for identifying the interactions of drug compounds with GPCRs (G-protein-coupled receptors), ion channels, enzymes, and NR (nuclear receptors), respectively. Rigorous cross-validations on a set of experiment-confirmed datasets have indicated that these new predictors remarkably outperformed the existing ones for the same purpose. To maximize users’ convenience, a public accessible Web server for iDrug-Target has been established at , by which users can easily get their desired results. It has not escaped our notice that the aforementioned strategy can be widely used in many other areas as well.

References in zbMATH (referenced in 13 articles )

Showing results 1 to 13 of 13.
Sorted by year (citations)

  1. Ahmad, Jamal; Hayat, Maqsood: MFSC: multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou’s PseAAC components (2019)
  2. Bai, Xiaolu; Chen, Xiaolin: Rational design, conformational analysis and membrane-penetrating dynamics study of Bac2A-derived antimicrobial peptides against gram-positive clinical strains isolated from pyemia (2019)
  3. Jia, Jianhua; Li, Xiaoyan; Qiu, Wangren; Xiao, Xuan; Chou, Kuo-Chen: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC (2019)
  4. Arif, Muhammad; Hayat, Maqsood; Jan, Zahoor: IMem-2LSAAC: a two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition (2018)
  5. Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen: pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC (2018)
  6. Mei, Juan; Fu, Yi; Zhao, Ji: Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition (2018)
  7. Sankari, E. Siva; Manimegalai, D.: Predicting membrane protein types by incorporating a novel feature set into Chou’s general PseAAC (2018)
  8. Zhang, Shengli; Duan, Xin: Prediction of protein subcellular localization with oversampling approach and Chou’s general PseAAC (2018)
  9. Dehzangi, Abdollah; López, Yosvany; Lal, Sunil Pranit; Taherzadeh, Ghazaleh; Michaelson, Jacob; Sattar, Abdul; Tsunoda, Tatsuhiko; Sharma, Alok: PSSM-Suc: accurately predicting succinylation using position specific scoring matrix into bigram for feature extraction (2017)
  10. Khan, Muslim; Hayat, Maqsood; Khan, Sher Afzal; Ahmad, Saeed; Iqbal, Nadeem: Bi-PSSM: position specific scoring matrix based intelligent computational model for identification of mycobacterial membrane proteins (2017)
  11. Pai, Priyadarshini P.; Dash, Tirtharaj; Mondal, Sukanta: Sequence-based discrimination of protein-RNA interacting residues using a probabilistic approach (2017)
  12. Jia, Jianhua; Liu, Zi; Xiao, Xuan; Liu, Bingxiang; Chou, Kuo-Chen: pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach (2016)
  13. Jiao, Ya-Sen; Du, Pu-Feng: Prediction of Golgi-resident protein types using general form of Chou’s pseudo-amino acid compositions: approaches with minimal redundancy maximal relevance feature selection (2016)