HomotopyContinuation

HomotopyContinuation.jl - a package for solving systems of polynomial equations in Julia. This paper is gives a short introduction into HomotopyContinuation.jl, a polynomial equations solver for Julia [1]. It present excerpts from the comprehensive documentation available at this https URL The aim of this project is twofold: establishing a fast numerical polynomial solver in Julia and at the same time providing a highly customizable algorithmic environment for researchers for designing and performing individual experiments. [1] J. Bezanson, A. Edelman, S. Karpinski and V. Shah: Julia: A fresh approach to numerical computing, SIAM Review, 59(1) (2017), 65-98.


References in zbMATH (referenced in 16 articles , 1 standard article )

Showing results 1 to 16 of 16.
Sorted by year (citations)

  1. Conradi, Carsten; Obatake, Nida; Shiu, Anne; Tang, Xiaoxian: Dynamics of ERK regulation in the processive limit (2021)
  2. Hauenstein, Jon D.; Safey El Din, Mohab; Schost, Éric; Vu, Thi Xuan: Solving determinantal systems using homotopy techniques (2021)
  3. Breiding, Paul; Sturmfels, Bernd; Timme, Sascha: 3264 conics in a second (2020)
  4. Di Rocco, Sandra; Eklund, David; Weinstein, Madeleine: The bottleneck degree of algebraic varieties (2020)
  5. Koutsoumpelias, Alexandros Grosdos; Wageringel, Markus: Moment ideals of local Dirac mixtures (2020)
  6. Moncusì, Laura Brustenga I.; Timme, Sascha; Weinstein, Madeleine: 96120: the degree of the linear orbit of a cubic surface (2020)
  7. Ranestad, Kristian; Sturmfels, Bernd: Twenty-seven questions about the cubic surface (2020)
  8. Sturmfels, Bernd; Timme, Sascha; Zwiernik, Piotr: Estimating linear covariance models with numerical nonlinear algebra (2020)
  9. Telen, Simon; Van Barel, Marc; Verschelde, Jan: A robust numerical path tracking algorithm for polynomial homotopy continuation (2020)
  10. Breiding, Paul: How many eigenvalues of a random symmetric tensor are real? (2019)
  11. Breiding, Paul; Kozhasov, Khazhgali; Lerario, Antonio: Random spectrahedra (2019)
  12. Sertöz, Emre Can: Computing periods of hypersurfaces (2019)
  13. Breiding, Paul; Kališnik, Sara; Sturmfels, Bernd; Weinstein, Madeleine: Learning algebraic varieties from samples (2018)
  14. Breiding, Paul; Timme, Sascha: HomotopyContinuation.jl: a package for homotopy continuation in Julia (2018)
  15. Davenport, James H. (ed.); Kauers, Manuel (ed.); Labahn, George (ed.); Urban, Josef (ed.): Mathematical software -- ICMS 2018. 6th international conference, South Bend, IN, USA, July 24--27, 2018. Proceedings (2018)
  16. Paul Breiding, Sascha Timme: HomotopyContinuation.jl - a package for solving systems of polynomial equations in Julia (2017) arXiv