MXNet

MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, MXNet contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly. A graph optimization layer on top of that makes symbolic execution fast and memory efficient. MXNet is portable and lightweight, scaling effectively to multiple GPUs and multiple machines. MXNet is also more than a deep learning project. It is also a collection of blue prints and guidelines for building deep learning systems, and interesting insights of DL systems for hackers


References in zbMATH (referenced in 36 articles )

Showing results 1 to 20 of 36.
Sorted by year (citations)

1 2 next

  1. David Salinas, Valentin Flunkert, Jan Gasthaus: DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks (2021) arXiv
  2. Haghighat, Ehsan; Bekar, Ali Can; Madenci, Erdogan; Juanes, Ruben: A nonlocal physics-informed deep learning framework using the peridynamic differential operator (2021)
  3. Haghighat, Ehsan; Juanes, Ruben: SciANN: a keras/tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networks (2021)
  4. Haghighat, Ehsan; Raissi, Maziar; Moure, Adrian; Gomez, Hector; Juanes, Ruben: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics (2021)
  5. Jun Wang, Yinglu Liu, Yibo Hu, Hailin Shi, Tao Mei: FaceX-Zoo: A PyTorch Toolbox for Face Recognition (2021) arXiv
  6. Qingzhong Wang, Pengfei Zhang, Haoyi Xiong, Jian Zhao: Face.evoLVe: A High-Performance Face Recognition Library (2021) arXiv
  7. Yang, Cong; Wang, Wenfeng; Zhang, Yunhui; Zhang, Zhikai; Shen, Lina; Li, Yipeng; See, John: MLife: a lite framework for machine learning lifecycle initialization (2021)
  8. Zhao, Xing; Papagelis, Manos; An, Aijun; Chen, Bao Xin; Liu, Junfeng; Hu, Yonggang: Zipline: an optimized algorithm for the elastic bulk synchronous parallel model (2021)
  9. Alexandrov, Alexander; Benidis, Konstantinos; Bohlke-Schneider, Michael; Flunkert, Valentin; Gasthaus, Jan; Januschowski, Tim; Maddix, Danielle C.; Rangapuram, Syama; Salinas, David; Schulz, Jasper; Stella, Lorenzo; Türkmen, Ali Caner; Wang, Yuyang: GluonTS: probabilistic and neural time series modeling in Python (2020)
  10. Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth Vepakomma, Abhishek Singh, Hang Qiu, Li Shen, Peilin Zhao, Yan Kang, Yang Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram, Salman Avestimehr: FedML: A Research Library and Benchmark for Federated Machine Learning (2020) arXiv
  11. Guo, Jian; He, He; He, Tong; Lausen, Leonard; Li, Mu; Lin, Haibin; Shi, Xingjian; Wang, Chenguang; Xie, Junyuan; Zha, Sheng; Zhang, Aston; Zhang, Hang; Zhang, Zhi; Zhang, Zhongyue; Zheng, Shuai; Zhu, Yi: GluonCV and GluonNLP: deep learning in computer vision and natural language processing (2020)
  12. Karumuri, Sharmila; Tripathy, Rohit; Bilionis, Ilias; Panchal, Jitesh: Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep neural networks (2020)
  13. Kazemi, Seyed Mehran; Goel, Rishab; Jain, Kshitij; Kobyzev, Ivan; Sethi, Akshay; Forsyth, Peter; Poupart, Pascal: Representation learning for dynamic graphs: a survey (2020)
  14. Kossaifi, Jean; Lipton, Zachary C.; Kolbeinsson, Arinbjorn; Khanna, Aran; Furlanello, Tommaso; Anandkumar, Anima: Tensor regression networks (2020)
  15. Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee, Gary Bradski: Kornia: an Open Source Differentiable Computer Vision Library for PyTorch (2019) arXiv
  16. Janzamin, Majid; Ge, Rong; Kossaifi, Jean; Anandkumar, Anima: Spectral learning on matrices and tensors (2019)
  17. Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, Dahua Lin: MMDetection: Open MMLab Detection Toolbox and Benchmark (2019) arXiv
  18. Neta Zmora, Guy Jacob, Lev Zlotnik, Bar Elharar, Gal Novik: Neural Network Distiller: A Python Package For DNN Compression Research (2019) arXiv
  19. van den Berg, E.: The Ocean Tensor Package (2019) not zbMATH
  20. Viktor Kazakov, Franz J. Király: Machine Learning Automation Toolbox (MLaut) (2019) arXiv

1 2 next