Nemo/Hecke: Computer Algebra and Number Theory Packages for the Julia Programming Language. We introduce two new packages, Nemo and Hecke, written in the Julia programming language for computer algebra and number theory. We demonstrate that high performance generic algorithms can be implemented in Julia, without the need to resort to a low-level C implementation. For specialised algorithms, we use Julia’s efficient native C interface to wrap existing C/C++ libraries such as Flint, Arb, Antic and Singular. We give examples of how to use Hecke and Nemo and discuss some algorithms that we have implemented to provide high performance basic arithmetic.

References in zbMATH (referenced in 19 articles )

Showing results 1 to 19 of 19.
Sorted by year (citations)

  1. Bellamy, Gwyn; Schmitt, Johannes; Thiel, Ulrich: Towards the classification of symplectic linear quotient singularities admitting a symplectic resolution (2022)
  2. Bena, Iosif; Blåbäck, Johan; Graña, Mariana; Lüst, Severin: Algorithmically solving the tadpole problem (2022)
  3. Muratore, Giosuè; Schneider, Csaba: Effective computations of the Atiyah-Bott formula (2022)
  4. Ali Bagci: JRAF: A Julia Package for Computation of the Relativistic Molecular Auxiliary Functions (2021) arXiv
  5. Chirre, Andrés; Pereira Júnior, Valdir José; De Laat, David: Primes in arithmetic progressions and semidefinite programming (2021)
  6. Dostert, Maria; de Laat, David; Moustrou, Philippe: Exact semidefinite programming bounds for packing problems (2021)
  7. Eder, Christian; Hofmann, Tommy: Efficient Gröbner bases computation over principal ideal rings (2021)
  8. Fieker, Claus; Hofmann, Tommy; Sanon, Sogo Pierre: On the computation of the endomorphism rings of abelian surfaces (2021)
  9. Kaluba, Marek; Kielak, Dawid; Nowak, Piotr: On property (T) for (\Aut(F_n)) and (\mathrmSL_n(\mathbbZ)) (2021)
  10. Klüners, Jürgen; Komatsu, Toru: Imaginary multiquadratic number fields with class group of exponent (3) and (5) (2021)
  11. Kon Kam King, Guillaume; Papaspiliopoulos, Omiros; Ruggiero, Matteo: Exact inference for a class of hidden Markov models on general state spaces (2021)
  12. Chirre, Andrés; Gonçalves, Felipe; de Laat, David: Pair correlation estimates for the zeros of the zeta function via semidefinite programming (2020)
  13. Dahne, Joel; Salvy, Bruno: Computation of tight enclosures for Laplacian eigenvalues (2020)
  14. Hofmann, Tommy; Johnston, Henri: Computing isomorphisms between lattices (2020)
  15. Hofmann, Tommy; Sircana, Carlo: On the computation of overorders (2020)
  16. De Feo, Luca; Randriam, Hugues; Rousseau, Édouard: Standard lattices of compatibly embedded finite fields (2019)
  17. Posur, Sebastian: Constructing equivariant vector bundles via the BGG correspondence (2019)
  18. Claus Fieker, William Hart, Tommy Hofmann, Fredrik Johansson: Nemo/Hecke: Computer Algebra and Number Theory Packages for the Julia Programming Language (2017) arXiv
  19. Fieker, Claus; Hart, William; Hofmann, Tommy; Johansson, Fredrik: Nemo/Hecke. Computer algebra and number theory packages for the Julia programming language (2017)