stochvol
R package stochvol: Efficient Bayesian Inference for Stochastic Volatility (SV) Models. Efficient algorithms for fully Bayesian estimation of stochastic volatility (SV) models via Markov chain Monte Carlo (MCMC) methods.
Keywords for this software
References in zbMATH (referenced in 25 articles , 1 standard article )
Showing results 1 to 20 of 25.
Sorted by year (- Barata, Raquel; Prado, Raquel; Sansó, Bruno: Fast inference for time-varying quantiles via flexible dynamic models with application to the characterization of atmospheric rivers (2022)
- Hosszejni, D.; Kastner, G: Modeling Univariate and Multivariate Stochastic Volatility in R with stochvol and factorstochvol (2021) not zbMATH
- Klaus Nordhausen, Markus Matilainen, Jari Miettinen, Joni Virta, Sara Taskinen: Dimension Reduction for Time Series in a Blind Source Separation Context Using R (2021) not zbMATH
- Michaud, N., de Valpine, P., Turek, D., Paciorek, C. J., Nguyen, D.: Sequential Monte Carlo Methods in the nimble and nimbleSMC R Packages (2021) not zbMATH
- Nordhausen, Klaus; Fischer, Gregor; Filzmoser, Peter: Blind source separation for compositional time series (2021)
- Ankargren, Sebastian; Unosson, Måns; Yang, Yukai: A flexible mixed-frequency vector autoregression with a steady-state prior (2020)
- Chavez, Gordon V.: Dynamic tail inference with log-Laplace volatility (2020)
- Kreuzer, Alexander; Czado, Claudia: Efficient Bayesian inference for nonlinear state space models with univariate autoregressive state equation (2020)
- Zens, Gregor; Böck, Maximilian; Zörner, Thomas O.: The heterogeneous impact of monetary policy on the US labor market (2020)
- Angela Bitto-Nemling, Annalisa Cadonna, Sylvia Frühwirth-Schnatter, Peter Knaus: Shrinkage in the Time-Varying Parameter Model Framework Using the R Package shrinkTVP (2019) arXiv
- Bitto, Angela; Frühwirth-Schnatter, Sylvia: Achieving shrinkage in a time-varying parameter model framework (2019)
- David Ardia; Keven Bluteau; Kris Boudt; Leopoldo Catania; Denis-Alexandre Trottier: Markov-Switching GARCH Models in R: The MSGARCH Package (2019) not zbMATH
- Hosszejni, Darjus; Kastner, Gregor: Approaches toward the Bayesian estimation of the stochastic volatility model with leverage (2019)
- Kastner, Gregor: Sparse Bayesian time-varying covariance estimation in many dimensions (2019)
- Bhattacharya, Arnab; Wilson, Simon P.: Sequential Bayesian inference for static parameters in dynamic state space models (2018)
- Chaim, Pedro; Laurini, Márcio P.: Volatility and return jumps in Bitcoin (2018)
- Chan, Joshua C. C.: Specification tests for time-varying parameter models with stochastic volatility (2018)
- De Luigi, Clara; Huber, Florian: Debt regimes and the effectiveness of monetary policy (2018)
- Hotz-Behofsits, Christian; Huber, Florian; Zörner, Thomas Otto: Predicting crypto-currencies using sparse non-Gaussian state space models (2018)
- Meng, Xiao-Li: Conducting highly principled data science: a statistician’s job and joy (2018)