The MITgcm (MIT General Circulation Model) is a numerical model designed for study of the atmosphere, ocean, and climate. Its non-hydrostatic formulation enables it to simulate fluid phenomena over a wide range of scales; its adjoint capability enables it to be applied to parameter and state estimation problems. By employing fluid isomorphisms, one hydrodynamical kernel can be used to simulate flow in both the atmosphere and ocean.

References in zbMATH (referenced in 17 articles )

Showing results 1 to 17 of 17.
Sorted by year (citations)

  1. Gael Forget: IndividualDisplacements.jl: a Julia package to simulate and study particle displacements within the climate system (2021) not zbMATH
  2. Edward W. Doddridge; Alexey Radul: Aronnax: An idealised isopycnal ocean model (2018) not zbMATH
  3. Aupy, Guillaume; Herrmann, Julien; Hovland, Paul; Robert, Yves: Optimal multistage algorithm for adjoint computation (2016)
  4. Zahr, M. J.; Persson, P.-O.: An adjoint method for a high-order discretization of deforming domain conservation laws for optimization of flow problems (2016)
  5. Kalmikov, Alexander G.; Heimbach, Patrick: A Hessian-based method for uncertainty quantification in global Ocean state estimation (2014)
  6. Lemieux, Jean-Fran├žois; Knoll, Dana A.; Losch, Martin; Girard, Claude: A second-order accurate in time implicit-explicit (IMEX) integration scheme for sea ice dynamics (2014)
  7. Losch, Martin; Fuchs, Annika; Lemieux, Jean-Fran├žois; Vanselow, Anna: A parallel Jacobian-free Newton-Krylov solver for a coupled sea ice-ocean model (2014)
  8. Maddison, J. R.; Farrell, P. E.: Rapid development and adjoining of transient finite element models (2014)
  9. Chen, Haibo; Miao, Chunbao; Lv, Xianqing: A three-dimensional numerical internal tidal model involving adjoint method (2012)
  10. Connors, Jeffrey M.; Miloua, Attou: Partitioned time discretization for parallel solution of coupled ODE systems (2011)
  11. Fang, F.; Pain, C. C.; Navon, I. M.; Gorman, G. J.; Piggott, M. D.; Allison, P. A.: The independent set perturbation adjoint method: a new method of differentiating mesh-based fluids models (2011)
  12. Zhang, Jicai; Lu, Xianqing: Inversion of three-dimensional tidal currents in marginal seas by assimilating satellite altimetry (2010)
  13. Alexe, Mihai; Sandu, Adrian: Forward and adjoint sensitivity analysis with continuous explicit Runge-Kutta schemes (2009)
  14. Naumann, Uwe: DAG reversal is NP-complete (2009)
  15. Shin, Jaewook; Malusare, Priyadarshini; Hovland, Paul D.: Design and implementation of a context-sensitive, flow-sensitive activity analysis algorithm for automatic differentiation (2008)
  16. Wunsch, Carl; Heimbach, Patrick: Practical global oceanic state estimation (2007)
  17. Heimbach, P.; Hill, C.; Giering, R.: Automatic generation of efficient adjoint code for a parallel Navier-Stokes solver (2002)

Further publications can be found at: