JETTO

JETTO: A free boundary plasma transport code. JETTO is a one-and-a-half-dimensional transport code calculating the evolution of plasma parameters in a time dependent axisymmetric MHD equilibrium configuration. A splitting technique gives a consistent solution of coupled equilibrium and transport equations. The plasma boundary is free and defined either by its contact with a limiter (wall) or by a separatrix or by the toroidal magnetic flux. The Grad’s approach to the equilibrium problem with adiabatic (or similar) constraints is adopted. This method consists of iterating by alternately solving the Grad-Schluter-Shafranov equation (PDE) and the ODE obtained by averaging the PDE over the magnetic surfaces. The bidimensional equation of the poloidal flux is solved by a finite difference scheme, whereas a Runge-Kutta method is chosen for the averaged equilibrium equation. The 1D transport equations (averaged over the magnetic surfaces) for the electron and ion densities and energies and for the rotational transform are written in terms of a coordinate (ρ) related to the toroidal flux. Impurity transport is also considered, under the hypothesis of coronal equilibrium. The transport equations are solved by an implicit scheme in time and by a finite difference scheme in space. The centering of the source terms and transport coefficients is performed using a Predictor-Corrector scheme. The basic version of the code is described here in detail; input and output parameters are also listed

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element