GYGLES
Finite element approach to global gyrokinetic particle-in-cell simulations using magnetic coordinates. We present a fully-global linear gyrokinetic simulation code (GYGLES) aimed at describing the unstable spectrum of the ion-temperature-gradient modes in toroidal geometry. We formulate the particle-in-cell method with finite elements defined in magnetic coordinates, which provides numerical convergence. The poloidal mode structure corresponding to k ∥ =0 is extracted without approximation from the equations, which reduces drastically the numerical resolution needed. The code can simulate routinely modes with both very long and very short toroidal wavelengths, can treat realistic MHD equilibria of any size, and runs on a massively parallel computer.
Keywords for this software
References in zbMATH (referenced in 7 articles , 1 standard article )
Showing results 1 to 7 of 7.
Sorted by year (- Ye, Lei; Xu, Yingfeng; Xiao, Xiaotao; Dai, Zongliang; Wang, Shaojie: A gyrokinetic continuum code based on the numerical Lie transform (NLT) method (2016)
- Görler, T.; Lapillonne, X.; Brunner, S.; Dannert, T.; Jenko, F.; Merz, F.; Told, D.: The global version of the gyrokinetic turbulence code GENE (2011)
- Hess, S.; Mottez, F.: How to improve the diagnosis of kinetic energy in (\deltaf) PIC codes (2009)
- Hatzky, R.; Könies, A.; Mishchenko, A.: Electromagnetic gyrokinetic PIC simulation with an adjustable control variates method (2007)
- Grandgirard, V.; Brunetti, M.; Bertrand, P.; Besse, N.; Garbet, X.; Ghendrih, P.; Manfredi, G.; Sarazin, Y.; Sauter, O.; Sonnendrücker, E.; Vaclavik, J.; Villard, L.: A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation (2006)
- Allfrey, S. J.; Hatzky, R.: A revised (\deltaf) algorithm for nonlinear PIC simulation (2003) ioport
- Fivaz, M.; Brunner, S.; de Ridder, G.; Sauter, O.; Tran, T. M.; Vaclavik, J.; Villard, L.; Appert, K.: Finite element approach to global gyrokinetic particle-in-cell simulations using magnetic coordinates (1998)