transport
R package transport: Optimal Transport in Various Forms. Solve optimal transport problems in statistics. Compute Wasserstein metrics (a.k.a. Kantorovitch, Fortet–Mourier, Mallows, Earth Mover’s, or minimal L_p metrics), return the corresponding transference plans, and display them graphically. Objects that can be compared include grey-scale images, point patterns, and mass vectors.
Keywords for this software
References in zbMATH (referenced in 7 articles )
Showing results 1 to 7 of 7.
Sorted by year (- Ahfock, Daniel; Pyne, Saumyadipta; McLachlan, Geoffrey J.: Statistical file-matching of non-Gaussian data: a game theoretic approach (2022)
- Hallin, Marc; Mordant, Gilles; Segers, Johan: Multivariate goodness-of-fit tests based on Wasserstein distance (2021)
- Bachoc, François; Suvorikova, Alexandra; Ginsbourger, David; Loubes, Jean-Michel; Spokoiny, Vladimir: Gaussian processes with multidimensional distribution inputs via optimal transport and Hilbertian embedding (2020)
- Gassiat, Elisabeth; Le Corff, Sylvain; Lehéricy, Luc: Identifiability and consistent estimation of nonparametric translation hidden Markov models with general state space (2020)
- Hartmann, Valentin; Schuhmacher, Dominic: Semi-discrete optimal transport: a solution procedure for the unsquared Euclidean distance case (2020)
- Janßen, Anja; Wan, Phyllis: (k)-means clustering of extremes (2020)
- Sommerfeld, Max; Schrieber, Jörn; Zemel, Yoav; Munk, Axel: Optimal transport: fast probabilistic approximation with exact solvers (2019)