FIESTA 2: parallelizeable multiloop numerical calculations. The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman integrals automatically in limits of momenta and masses with the use of sector decompositions and Mellin-Barnes representations. Other important improvements to the code are complete parallelization (even to multiple computers), high-precision arithmetics (allowing to calculate integrals which were undoable before), new integrators, Speer sectors as a strategy, the possibility to evaluate more general parametric integrals.

References in zbMATH (referenced in 44 articles )

Showing results 1 to 20 of 44.
Sorted by year (citations)

1 2 3 next

  1. Xiao Liu, Yan-Qing Ma: AMFlow: a Mathematica Package for Feynman integrals computation via Auxiliary Mass Flow (2022) arXiv
  2. Heinrich, Gudrun: Collider physics at the precision frontier (2021)
  3. Vysotsky, L. I.; Smirnov, A. V.; Tyrtyshnikov, E. E.: Tensor-train numerical integration of multivariate functions with singularities (2021)
  4. Capatti, Zeno; Hirschi, Valentin; Kermanschah, Dario; Pelloni, Andrea; Ruijl, Ben: Numerical loop-tree duality: contour deformation and subtraction (2020)
  5. Martijn Hidding: DiffExp, a Mathematica package for computing Feynman integrals in terms of one-dimensional series expansions (2020) arXiv
  6. Smirnov, A. V.; Smirnov, V. A.: How to choose master integrals (2020)
  7. Artz, Johannes; Harlander, Robert V.; Lange, Fabian; Neumann, Tobias; Prausa, Mario: Results and techniques for higher order calculations within the gradient-flow formalism (2019)
  8. Bern, Zvi; Cheung, Clifford; Roiban, Radu; Shen, Chia-Hsien; Solon, Mikhail P.; Zeng, Mao: Black hole binary dynamics from the double copy and effective theory (2019)
  9. Bianchi, Marco S.; Leoni, Matias: A (QQ \toQQ) planar double box in canonical form (2018)
  10. Boels, Rutger H.; Huber, Tobias; Yang, Gang: The Sudakov form factor at four loops in maximal super Yang-Mills theory (2018)
  11. Borowka, Sophia; Gehrmann, Thomas; Hulme, Daniel: Systematic approximation of multi-scale Feynman integrals (2018)
  12. Badger, Simon; Mogull, Gustav; Peraro, Tiziano: Local integrands for two-loop all-plus Yang-Mills amplitudes (2016)
  13. Boels, Rutger H.; Kniehl, Bernd A.; Yang, Gang: Master integrals for the four-loop Sudakov form factor (2016)
  14. Feng, Feng: \textscAPart2: a generalized \textscMathematica\textttApartfunction (2016)
  15. Grozin, Andrey G.; Henn, Johannes M.; Korchemsky, Gregory P.; Marquard, Peter: The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions (2016)
  16. Henn, Johannes M.; Smirnov, Alexander V.; Smirnov, Vladimir A.: Analytic results for planar three-loop integrals for massive form factors (2016)
  17. Ievgen Dubovyk, Janusz Gluza, Tord Riemann, Johann Usovitsch: Numerical integration of massive two-loop Mellin-Barnes integrals in Minkowskian regions (2016) arXiv
  18. Kozlov, Mikhail G.; Lee, Roman N.: One-loop pentagon integral in (d) dimensions from differential equations in (\epsilon)-form (2016)
  19. Smirnov, A. V.: FIESTA4: optimized Feynman integral calculations with GPU support (2016)
  20. Badger, Simon; Mogull, Gustav; Ochirov, Alexander; O’Connell, Donal: A complete two-loop, five-gluon helicity amplitude in Yang-Mills theory (2015)

1 2 3 next