Menu
  • About & Contact
  • Feedback
  • Contribute
  • Help
  • zbMATH

swMATH

swmath-logo
  • Search
  • Advanced search
  • Browse
  • browse software by name
  • browse software by keywords
  • browse software by MSC
  • browse software by types

discSurv

R package discSurv: Discrete Time Survival Analysis. Provides data transformations, estimation utilities, predictive evaluation measures and simulation functions for discrete time survival analysis.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

  • survival analysis
  • discrete time-to-event data
  • recursive partitioning
  • semiparametric regression
  • vertical model
  • time-varying coefficients
  • motor insurance
  • count data
  • Monte Carlo simulation
  • smoothing
  • discrete-time data
  • relative hazards
  • zero-inflated model
  • Hellinger’s distance
  • random survival forests
  • discrete event times
  • competing risks
  • censoring
  • transition model
  • class imbalance
  • cause-specific hazards
  • ranked set sampling
  • total hazards
  • discrete time competing risks
  • varying coefficients
  • regression modeling
  • hazard models

  • URL: cran.r-project.org/web...
  • Code
  • InternetArchive
  • Manual: cran.r-project.org/web...
  • Authors: Thomas Welchowski; Matthias Schmid
  • Dependencies: R

  • Add information on this software.


  • Related software:
  • Ecdat
  • R
  • mgcv
  • gamair
  • VGAM
  • DStree
  • rpart
  • glmnet
  • catdata
  • grplasso
  • Show more...
  • glmmLasso
  • car
  • randomForest
  • C4.5
  • ordinal
  • flexmix
  • KMsurv
  • unbalanced
  • ICcforest
  • mboost
  • Show less...

References in zbMATH (referenced in 8 articles )

Showing results 1 to 8 of 8.
y Sorted by year (citations)

  1. Ndlovu, Bonginkosi; Melesse, Sileshi; Zewotir, Temesgen: A regression analysis of discrete time competing risks data using a vertical model approach (2022)
  2. Berger, Moritz; Tutz, Gerhard: Transition models for count data: a flexible alternative to fixed distribution models (2021)
  3. Puth, Marie-Therese; Tutz, Gerhard; Heim, Nils; Münster, Eva; Schmid, Matthias; Berger, Moritz: Tree-based modeling of time-varying coefficients in discrete time-to-event models (2020)
  4. Schmid, Matthias; Welchowski, Thomas; Wright, Marvin N.; Berger, Moritz: Discrete-time survival forests with Hellinger distance decision trees (2020)
  5. Berger, Moritz; Welchowski, Thomas; Schmitz-Valckenberg, Steffen; Schmid, Matthias: A classification tree approach for the modeling of competing risks in discrete time (2019)
  6. Tutkun, Nihal Ata; Koyuncu, Nursel; Karabey, Uğur: Discrete-time survival analysis under ranked set sampling: an application to Turkish motor insurance data (2019)
  7. Berger, Moritz; Schmid, Matthias: Semiparametric regression for discrete time-to-event data (2018)
  8. Tutz, Gerhard; Schmid, Matthias: Modeling discrete time-to-event data (2016)

  • Article statistics & filter:

  • Search for articles
  • MSC classification / top
    • Top MSC classes
      • 62 Statistics

  • Publication year
    • 2010 - today
    • 2005 - 2009
    • 2000 - 2004
    • before 2000
  • Terms & Conditions
  • Imprint
  • Privacy Policy