Isabelle/HOL

Isabelle is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language and provides tools for proving those formulas in a logical calculus. The main application is the formalization of mathematical proofs and in particular formal verification, which includes proving the correctness of computer hardware or software and proving properties of computer languages and protocols.


References in zbMATH (referenced in 964 articles , 2 standard articles )

Showing results 1 to 20 of 964.
Sorted by year (citations)

1 2 3 ... 47 48 49 next

  1. Koutsoukou-Argyraki, Angeliki: Formalising mathematics -- in praxis; a mathematician’s first experiences with Isabelle/HOL and the why and how of getting started (2021)
  2. Mahboubi, Assia; Sibut-Pinote, Thomas: A formal proof of the irrationality of (\zeta(3)) (2021)
  3. Reed Oei, Dun Ma, Christian Schulz, Philipp Hieronymi: Pecan: An Automated Theorem Prover for Automatic Sequences using Büchi Automata (2021) arXiv
  4. Abrahamsson, Oskar: A verified proof checker for higher-order logic (2020)
  5. Abrahamsson, Oskar; Ho, Son; Kanabar, Hrutvik; Kumar, Ramana; Myreen, Magnus O.; Norrish, Michael; Tan, Yong Kiam: Proof-producing synthesis of CakeML from monadic HOL functions (2020)
  6. Ballarin, Clemens: Exploring the structure of an algebra text with locales (2020)
  7. Barbosa, Haniel; Blanchette, Jasmin Christian; Fleury, Mathias; Fontaine, Pascal: Scalable fine-grained proofs for formula processing (2020)
  8. Basin, David A.; Lochbihler, Andreas; Sefidgar, S. Reza: CryptHOL: game-based proofs in higher-order logic (2020)
  9. Benzmüller, Christoph; Fuenmayor, David: Computer-supported analysis of positive properties, ultrafilters and modal collapse in variants of Gödel’s ontological argument (2020)
  10. Benzmüller, Christoph; Parent, Xavier; van der Torre, Leendert: Designing normative theories for ethical and legal reasoning: \textscLogiKEyframework, methodology, and tool support (2020)
  11. Benzmüller, Christoph; Scott, Dana S.: Automating free logic in HOL, with an experimental application in category theory (2020)
  12. Berghammer, Rudolf; Furusawa, Hitoshi; Guttmann, Walter; Höfner, Peter: Relational characterisations of paths (2020)
  13. Carneiro, Mario: Metamath Zero: designing a theorem prover prover (2020)
  14. Carnielli, Walter; Fuenmayor, David: Gödel’s incompleteness theorems from a paraconsistent perspective (2020)
  15. Coghetto, Roland: Klein-Beltrami model. IV (2020)
  16. Coghetto, Roland: Klein-Beltrami model. III (2020)
  17. Cristiá, Maximiliano; Rossi, Gianfranco: Solving quantifier-free first-order constraints over finite sets and binary relations (2020)
  18. Divasón, Jose; Joosten, Sebastiaan J. C.; Thiemann, René; Yamada, Akihisa: A verified implementation of the Berlekamp-Zassenhaus factorization algorithm (2020)
  19. Dolu, Nazlı; Hastürk, Umur; Tural, Mustafa Kemal: Solution methods for a min-max facility location problem with regional customers considering closest Euclidean distances (2020)
  20. Eberl, Manuel; Haslbeck, Max W.; Nipkow, Tobias: Verified analysis of random binary tree structures (2020)

1 2 3 ... 47 48 49 next