HomCont, jointly developed with Alan Champneys (University of Bristol) and Yuri A Kuznetsov (Utrecht University), is a numerical toolbox for homoclinic bifurcation analysis. It is designed for use with AUTO written by Eusebius Doedel (Concordia University). Specifically, HomCont deals with continuation of codimension-one heteroclinic and homoclinic orbits to hyperbolic and saddle-node equilibria, including the detection of many codimension-two singularities and the continuation of these singularities in three or more parameters.

References in zbMATH (referenced in 243 articles , 1 standard article )

Showing results 1 to 20 of 243.
Sorted by year (citations)

1 2 3 ... 11 12 13 next

  1. Yagasaki, Kazuyuki; Yamazoe, Shotaro: Numerical computations for bifurcations and spectral stability of solitary waves in coupled nonlinear Schrödinger equations (2022)
  2. Al-Salman, Ahd Mahmoud; Páez Chávez, Joseph; Wijaya, Karunia Putra: A modeling study of predator-prey interaction propounding honest signals and cues (2021)
  3. Cass, J. F.; Hogan, S. J.: Two dimensionless parameters and a mechanical analogue for the HKB model of motor coordination (2021)
  4. Hetebrij, Wouter; Mireles James, J. D.: Critical homoclinics in a restricted four-body problem: numerical continuation and center manifold computations (2021)
  5. Lu, Min; Huang, Jicai: Global analysis in Bazykin’s model with Holling II functional response and predator competition (2021)
  6. Mukhopadhyay, Sanghasri; Mukhopadhyay, Asim: Hydrodynamic instability and wave formation of a viscous film flowing down a slippery inclined substrate: effect of odd-viscosity (2021)
  7. Pusuluri, Krishna; Meijer, H. G. E.; Shilnikov, A. L.: (INVITED) Homoclinic puzzles and chaos in a nonlinear laser model (2021)
  8. Qin, B. W.; Chung, K. W.; Algaba, A.; Rodríguez-Luis, A. J.: High-order approximation of heteroclinic bifurcations in truncated 2D-normal forms for the generic cases of Hopf-zero and nonresonant double Hopf singularities (2021)
  9. Yagasaki, Kazuyuki; Yamazoe, Shotaro: Numerical analyses for spectral stability of solitary waves near bifurcation points (2021)
  10. Algaba, Antonio; Chung, Kwok-Wai; Qin, Bo-Wei; Rodríguez-Luis, Alejandro J.: Computation of all the coefficients for the global connections in the (\mathbbZ_2)-symmetric Takens-Bogdanov normal forms (2020)
  11. Bolzoni, Luca; Marca, Rossella Della; Groppi, Maria; Gragnani, Alessandra: Dynamics of a metapopulation epidemic model with localized culling (2020)
  12. Contreras-Julio, Dana; Aguirre, Pablo; Mujica, José; Vasilieva, Olga: Finding strategies to regulate propagation and containment of dengue via invariant manifold analysis (2020)
  13. Giraldo, Andrus; Krauskopf, Bernd; Osinga, Hinke M.: Computing connecting orbits to infinity associated with a homoclinic flip bifurcation (2020)
  14. Kreusser, L. M.; McLachlan, R. I.; Offen, C.: Detection of high codimensional bifurcations in variational PDEs (2020)
  15. Leonov, G. A.; Mokaev, R. N.; Kuznetsov, N. V.; Mokaev, T. N.: Homoclinic bifurcations and chaos in the fishing principle for the Lorenz-like systems (2020)
  16. Páez Chávez, Joseph; Zhang, Zhi; Liu, Yang: A numerical approach for the bifurcation analysis of nonsmooth delay equations (2020)
  17. Qin, Bo-Wei; Chung, Kwok-Wai; Algaba, Antonio; Rodríguez-Luis, Alejandro J.: Analytical approximation of cuspidal loops using a nonlinear time transformation method (2020)
  18. Qin, Bo-Wei; Chung, Kwok-Wai; Algaba, Antonio; Rodríguez-Luis, Alejandro J.: High-order analysis of canard explosion in the Brusselator equations (2020)
  19. Qin, Bo-Wei; Chung, Kwok-Wai; Algaba, Antonio; Rodríguez-Luis, Alejandro J.: High-order study of the canard explosion in an aircraft ground dynamics model (2020)
  20. Silva, Frederico M. A.; Rodrigues, Patrícia C.; Gonçalves, Paulo B.: Nonlinear oscillation of a FG cylindrical shell on a discontinuous elastic foundation (2020)

1 2 3 ... 11 12 13 next