Menu
  • About & Contact
  • Feedback
  • Contribute
  • Help
  • zbMATH

swMATH

swmath-logo
  • Search
  • Advanced search
  • Browse
  • browse software by name
  • browse software by keywords
  • browse software by MSC
  • browse software by types

assist

assist: A Suite of R Functions Implementing Spline Smoothing Techniques. A comprehensive package for fitting various non-parametric/semi-parametric linear/nonlinear fixed/mixed smoothing spline models.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

  • smoothing spline
  • random effects
  • endocrinology
  • semi-nonparametric models
  • SAEM algorithm
  • golf
  • kernel
  • hormone data
  • local likelihood ratio test
  • semiparametric estimation
  • joint Bahadur representation
  • biological rhythm
  • Zellner-Siow prior
  • smoothing spline ANOVA
  • penalized least squares
  • skill
  • semiparametric nonlinear mixed effects model
  • hot hands
  • simultaneous confidence band
  • joint asymptotics
  • nonparametric regression
  • shrinkage
  • on-line auction
  • smoothing splines
  • weighted least squares
  • self-modeling nonlinear regression model
  • depression
  • algorithms
  • semi-parametric nonlinear mixed effects model
  • Bayesian confidence intervals

  • URL: cran.r-project.org/web...
  • Code
  • InternetArchive
  • Manual: cran.r-project.org/web...
  • Authors: Yuedong Wang; Chunlei Ke
  • Dependencies: R

  • Add information on this software.


  • Related software:
  • gss
  • R
  • gamair
  • bigsplines
  • mgcv
  • S-PLUS
  • UCI-ml
  • SemiPar
  • lme4
  • FUNFITS
  • Show more...
  • ElemStatLearn
  • ConfBands
  • MEMSS
  • Show less...

References in zbMATH (referenced in 11 articles )

Showing results 1 to 11 of 11.
y Sorted by year (citations)

  1. Helwig, Nathaniel E.: Efficient estimation of variance components in nonparametric mixed-effects models with large samples (2016)
  2. Cheng, Guang; Shang, Zuofeng: Joint asymptotics for semi-nonparametric regression models with partially linear structure (2015)
  3. Arribas-Gil, Ana; Bertin, Karine; Meza, Cristian; Rivoirard, Vincent: Lasso-type estimators for semiparametric nonlinear mixed-effects models estimation (2014)
  4. Shang, Zuofeng; Cheng, Guang: Local and global asymptotic inference in smoothing spline models (2013)
  5. Cheng, Chin-I.; Speckman, Paul L.: Bayesian smoothing spline analysis of variance (2012)
  6. Wand, M. P.: Book review of: Y. Wang, Smoothing splines. Methods and applications (2012)
  7. Connolly, Robert A.; Rendleman, Richard J. jun.: Skill, luck, and streaky play on the PGA tour (2008)
  8. Liu, Anna; Wang, Yuedong: Modeling of hormone secretion-generating mechanisms with splines: a pseudo-likelihood approach (2007)
  9. Yang, Yu-Chieh; Liu, Anna; Wang, Yuedong: Detecting pulsatile hormone secretions using nonlinear mixed effects partial spline models (2006)
  10. Kim, Young-Ju; Gu, Chong: Smoothing spline Gaussian regression: more scalable computation via efficient approximation (2004)
  11. Wang, Yuedong; Ke, Chunlei; Brown, Morton B.: Shape-invariant modeling of circadian rhythms with random effects and smoothing spline ANOVA decompositions (2003)

  • Article statistics & filter:

  • Search for articles
  • MSC classification / top
    • Top MSC classes
      • 00 General mathematics
      • 46 Functional analysis
      • 62 Statistics
      • 65 Numerical analysis
      • 92 Applications of...
    • Other MSC classes
      • 41 Approximation and...

  • Publication year
    • 2010 - today
    • 2005 - 2009
    • 2000 - 2004
    • before 2000

  • Chart: cumulative / absolute
  • Terms & Conditions
  • Imprint
  • Privacy Policy