Menu
  • About & Contact
  • Feedback
  • Contribute
  • Help
  • zbMATH

swMATH

swmath-logo
  • Search
  • Advanced search
  • Browse
  • browse software by name
  • browse software by keywords
  • browse software by MSC
  • browse software by types

abctools

R package abctools: Tools for ABC Analyses. Tools for approximate Bayesian computation including summary statistic selection and assessing coverage.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

  • likelihood-free inference
  • approximate Bayesian computation
  • Genomics
  • empirical likelihood
  • approximate Bayesian computation (ABC)
  • model inference
  • asymptotic sufficiency
  • summary statistics
  • SoftwareX
  • alpha-stable distribution
  • regression-adjustment
  • regularization
  • parameter inference
  • Python
  • inference of unknown parameters
  • characteristic function
  • stochastic volatility model
  • unscented Kalman filter
  • indirect inference
  • High-throughput computing
  • likelihood-free method
  • (\kappa)-nearest neighbor entropy
  • approximate Bayesian computational method
  • Coalescent simulation
  • coverage
  • Bayesian consistency
  • approximate likelihood
  • dimension reduction
  • bootstrap likelihood
  • variable selection

  • URL: cran.r-project.org/web...
  • Code
  • InternetArchive
  • Manual: cran.r-project.org/web...
  • Authors: Matt Nunes; Dennis Prangle
  • Dependencies: R

  • Add information on this software.


  • Related software:
  • abc
  • ABCtoolbox
  • R
  • ABrox
  • epiABC
  • DIYABC
  • abcrf
  • BayesDA
  • pls
  • BioBayes
  • Show more...
  • AABC
  • SimPrily
  • skeleSim
  • BaySICS
  • msBayes
  • astroABC
  • REJECTOR
  • CosmoPMC
  • ABC-SysBio
  • PopABC
  • Show less...

References in zbMATH (referenced in 8 articles )

Showing results 1 to 8 of 8.
y Sorted by year (citations)

  1. Ke, Yuqin; Tian, Tianhai: Approximate Bayesian computational methods for the inference of unknown parameters (2019)
  2. Martin, Gael M.; McCabe, Brendan P. M.; Frazier, David T.; Maneesoonthorn, Worapree; Robert, Christian P.: Auxiliary likelihood-based approximate Bayesian computation in state space models (2019)
  3. Ariella L.Gladstein; Consuelo D. Quinto-Cortés; Julian L. Pistorius; David Christy; Logan Gantner; Blake L. Joyce: SimPrily: A Python framework to simplify high-throughput genomic simulations (2018) not zbMATH
  4. Bee, M.; Trapin, L.: A characteristic function-based approach to approximate maximum likelihood estimation (2018)
  5. Karabatsos, George; Leisen, Fabrizio: An approximate likelihood perspective on ABC methods (2018)
  6. Rodrigues, G. S.; Prangle, D.; Sisson, S. A.: Recalibration: a post-processing method for approximate Bayesian computation (2018)
  7. Prangle, D.; Blum, M. G. B.; Popovic, G.; Sisson, S. A.: Diagnostic tools for approximate Bayesian computation using the coverage property (2014)
  8. Blum, M. G. B.; Nunes, M. A.; Prangle, D.; Sisson, S. A.: A comparative review of dimension reduction methods in approximate Bayesian computation (2013)

  • Article statistics & filter:

  • Search for articles
  • MSC classification / top
    • Top MSC classes
      • 60 Probability theory and...
      • 62 Statistics
      • 65 Numerical analysis

  • Publication year
    • 2010 - today
    • 2005 - 2009
    • 2000 - 2004
    • before 2000
  • Terms & Conditions
  • Imprint
  • Privacy Policy