Menu
  • About & Contact
  • Feedback
  • Contribute
  • Help
  • zbMATH

swMATH

swmath-logo
  • Search
  • Advanced search
  • Browse
  • browse software by name
  • browse software by keywords
  • browse software by MSC
  • browse software by types

glmmLasso

Groll, A.: glmmLasso: Variable Selection for Generalized Linear Mixed Models by L1-penalized Estimation. R package

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

  • longitudinal data
  • variable selection
  • Lasso
  • Poisson regression
  • variance patterns
  • discrete survival
  • random effects
  • prediction
  • mixed-effect models
  • Lasso regression
  • hierarchical models
  • high-dimensional data
  • regression trees
  • classification
  • linear models
  • R package
  • spatial count data
  • Bayesian inference
  • penalty
  • generalized linear mixed model
  • gradient ascent
  • supervised components
  • structural relevance
  • Markov chain Monte Carlo
  • multicollinearity
  • regularization methods
  • R
  • ordinal response
  • within-person variability
  • diversity patterns

  • URL: cran.r-project.org/web...
  • Code
  • InternetArchive
  • Manual: cran.r-project.org/web...
  • Authors: Andreas Groll
  • Dependencies: R

  • Add information on this software.


  • Related software:
  • R
  • lme4
  • Fahrmeir
  • glmmML
  • glmnet
  • MASS (R)
  • ordinal
  • SASmixed
  • penalized
  • mgcv
  • Show more...
  • rpart
  • S-PLUS
  • MEMSS
  • MCMCglmm
  • SAS
  • gamair
  • nlme
  • DStree
  • glmm
  • mboost
  • Show less...

References in zbMATH (referenced in 8 articles )

Showing results 1 to 8 of 8.
y Sorted by year (citations)

  1. Nestler, Steffen; Humberg, Sarah: A Lasso and a regression tree mixed-effect model with random effects for the level, the residual variance, and the autocorrelation (2022)
  2. Bonner, S., Kim, H.-N., Westneat, D., Mutzel, A., Wright, J., Schofield, M.: dalmatian: A Package for Fitting Double Hierarchical Linear Models in R via JAGS and nimble (2021) not zbMATH
  3. Chauvet, Jocelyn; Trottier, Catherine; Bry, Xavier: Component-based regularization of multivariate generalized linear mixed models (2019)
  4. Xie, Yimeng; Xu, Li; Li, Jie; Deng, Xinwei; Hong, Yili; Kolivras, Korine; Gaines, David N.: Spatial variable selection and an application to Virginia Lyme disease emergence (2019)
  5. Groll, Andreas; Tutz, Gerhard: Variable selection in discrete survival models including heterogeneity (2017)
  6. Tutz, Gerhard; Schmid, Matthias: Modeling discrete time-to-event data (2016)
  7. Hou, Jiayi; Archer, Kellie J.: Regularization method for predicting an ordinal response using longitudinal high-dimensional genomic data (2015)
  8. Groll, Andreas; Tutz, Gerhard: Variable selection for generalized linear mixed models by (L_1)-penalized estimation (2014)

  • Article statistics & filter:

  • Search for articles
  • MSC classification / top
    • Top MSC classes
      • 62 Statistics
      • 65 Numerical analysis
      • 92 Applications of...

  • Publication year
    • 2010 - today
    • 2005 - 2009
    • 2000 - 2004
    • before 2000
  • Terms & Conditions
  • Imprint
  • Privacy Policy