NACLab: A Matlab Toolbox for Numerical Algebraic Computation. Accurate numerical solutions of hypersensitive algebraic problems from approximate data. Intuitive polynomial computation interface in Matlab. Soving linear equation L(z) = b directly from linear transformation L even if it is rank-deficient, without matrix input from the use. NAClab features convenient WYSIWYG polynomial input, output and manipulations, solving linear equations directly from linear transformations, and solving nonlinear least squares problem with Gauss-Newtion iterations.

References in zbMATH (referenced in 19 articles )

Showing results 1 to 19 of 19.
Sorted by year (citations)

  1. Luo, Xin-long; Xiao, Hang; Lv, Jia-hui: Continuation Newton methods with the residual trust-region time-stepping scheme for nonlinear equations (2022)
  2. Miyajima, Shinya: Verified computation of matrix gamma function (2022)
  3. Petkov, Petko H.; Konstantinov, Mihail M.: The numerical Jordan form (2022)
  4. Miyajima, Shinya: Computing enclosures for the matrix Mittag-Leffler function (2021)
  5. Miyajima, Shinya: Verified computation of real powers of matrices (2021)
  6. Bourne, Martin; Winkler, Joab; Su, Yi: The computation of multiple roots of a Bernstein basis polynomial (2020)
  7. Zeng, Zhonggang: Geometric modeling and regularization of algebraic problems (2020)
  8. Miyajima, Shinya: Verified computation for the matrix principal logarithm (2019)
  9. Miyajima, Shinya: Verified computation of the matrix exponential (2019)
  10. Miyajima, Shinya: Verified computation for the matrix Lambert (W) function (2019)
  11. Zeng, Zhonggang: On the sensitivity of singular and ill-conditioned linear systems (2019)
  12. Zeng, Zhonggang: Intuitive interface for solving linear and nonlinear system of equations (2018)
  13. Boralevi, Ada; van Doornmalen, Jasper; Draisma, Jan; Hochstenbach, Michiel E.; Plestenjak, Bor: Uniform determinantal representations (2017)
  14. Chen, Liping; Han, Lixing; Zhou, Liangmin: Linear homotopy method for computing generalized tensor eigenpairs (2017)
  15. Plestenjak, Bor: Minimal determinantal representations of bivariate polynomials (2017)
  16. Wu, Wenyuan; Zeng, Zhonggang: The numerical factorization of polynomials (2017)
  17. Chen, Liping; Han, Lixing; Zhou, Liangmin: Computing tensor eigenvalues via homotopy methods (2016)
  18. Plestenjak, Bor; Hochstenbach, Michiel E.: Roots of bivariate polynomial systems via determinantal representations (2016)
  19. Zeng, Zhonggang; Li, Tien-Yien: Naclab: a Matlab toolbox for numerical algebraic computation (2013) ioport