DUNE

DUNE, the Distributed and Unified Numerics Environment is a modular toolbox for solving partial differential equations (PDEs) with grid-based methods. It supports the easy implementation of methods like Finite Elements (FE), Finite Volumes (FV), and also Finite Differences (FD). DUNE is free software licensed under the GPL (version 2) with a so called ”runtime exception” (see license). This licence is similar to the one under which the libstdc++ libraries are distributed. Thus it is possible to use DUNE even in proprietary software. The underlying idea of DUNE is to create slim interfaces allowing an efficient use of legacy and/or new libraries. Modern C++ programming techniques enable very different implementations of the same concept (i.e. grids, solvers, ...) using a common interface at a very low overhead. Thus DUNE ensures efficiency in scientific computations and supports high-performance computing applications.


References in zbMATH (referenced in 159 articles , 3 standard articles )

Showing results 1 to 20 of 159.
Sorted by year (citations)

1 2 3 ... 6 7 8 next

  1. Bastian, Peter; Blatt, Markus; Dedner, Andreas; Dreier, Nils-Arne; Engwer, Christian; Fritze, René; Gräser, Carsten; Grüninger, Christoph; Kempf, Dominic; Klöfkorn, Robert; Ohlberger, Mario; Sander, Oliver: The \textscDuneframework: basic concepts and recent developments (2021)
  2. Baumgarten, Niklas; Wieners, Christian: The parallel finite element system M++ with integrated multilevel preconditioning and multilevel Monte Carlo methods (2021)
  3. Bespalov, Alex; Rocchi, Leonardo; Silvester, David: T-IFISS: a toolbox for adaptive FEM computation (2021)
  4. Christoph Lehrenfeld, Fabian Heimann, Janosch Preuß, Henry von Wahl: ngsxfem: Add-on to NGSolve for geometrically unfitted finite element discretizations. (2021) not zbMATH
  5. Elliott, Charles M.; Hatcher, Luke; Herbert, Philip J.: Small deformations of spherical biomembranes (2021)
  6. Engwer, Christian; Wenske, Michael: Estimating the extent of glioblastoma invasion. Approximate stationalization of anisotropic advection-diffusion-reaction equations in the context of glioblastoma invasion (2021)
  7. Götschel, Sebastian; Schiela, Anton; Weiser, Martin: Kaskade 7 -- a flexible finite element toolbox (2021)
  8. Haasdonk, Bernard: MOR software (2021)
  9. Koch, Timo; Gläser, Dennis; Weishaupt, Kilian; Ackermann, Sina; Beck, Martin; Becker, Beatrix; Burbulla, Samuel; Class, Holger; Coltman, Edward; Emmert, Simon; Fetzer, Thomas; Grüninger, Christoph; Heck, Katharina; Hommel, Johannes; Kurz, Theresa; Lipp, Melanie; Mohammadi, Farid; Scherrer, Samuel; Schneider, Martin; Seitz, Gabriele; Stadler, Leopold; Utz, Martin; Weinhardt, Felix; Flemisch, Bernd: DuMu(^\textx 3) -- an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling (2021)
  10. Lakshman, Srinath; Tewes, Walter; Harth, Kirsten; Snoeijer, Jacco H.; Lohse, Detlef: Deformation and relaxation of viscous thin films under bouncing drops (2021)
  11. Rasmussen, Atgeirr Flø; Sandve, Tor Harald; Bao, Kai; Lauser, Andreas; Hove, Joakim; Skaflestad, Bård; Klöfkorn, Robert; Blatt, Markus; Rustad, Alf Birger; Sævareid, Ove; Lie, Knut-Andreas; Thune, Andreas: The open porous media flow reservoir simulator (2021)
  12. Varma, V. Dhanya; Nadupuri, Suresh Kumar; Chamakuri, Nagaiah: A posteriori error estimates and an adaptive finite element solution for the system of unsteady convection-diffusion-reaction equations in fluidized beds (2021)
  13. Bach, Annika; Sommer, Liesel: A (\Gamma)-convergence result for fluid-filled fracture propagation (2020)
  14. Beck, M.; Rinaldi, A. P.; Flemisch, B.; Class, H.: Accuracy of fully coupled and sequential approaches for modeling hydro- and geomechanical processes (2020)
  15. Chamakuri, Nagaiah; Kügler, Philipp: A coupled monodomain solver with optimal memory usage for the simulation of cardiac wave propagation (2020)
  16. Dahmen, Wolfgang; Gruber, Felix; Mula, Olga: An adaptive nested source term iteration for radiative transfer equations (2020)
  17. Dedner, Andreas; Klöfkorn, Robert: A Python framework for solving advection-diffusion problems (2020)
  18. Doyle, Bryan; Riviere, Beatrice; Sekachev, Michael: A multinumerics scheme for incompressible two-phase flow (2020)
  19. Engwer, Christian; May, Sandra; Nüßing, Andreas; Streitbürger, Florian: A stabilized DG cut cell method for discretizing the linear transport equation (2020)
  20. Koch, Timo; Helmig, Rainer; Schneider, Martin: A new and consistent well model for one-phase flow in anisotropic porous media using a distributed source model (2020)

1 2 3 ... 6 7 8 next