DOT - Design Optimization Tools. DOT is a general-purpose gradient-based optimization software library that can be used to solve a wide variety of optimization problems. Users have to link the DOT library into their own program. DOT provides the optimization technology, while the rest of the program has to provide the required function evaluations needed to perform the optimization. These function evaluations can be linear or nonlinear functions of the design variables. They may be very simple analytical functions or may be highly complicated implicit functions, for example a non-linear structural finite element simulation. Very little formal knowledge of optimization techniques is needed to make efficient use of DOT. DOT can handle constrained, unconstrained, linear and non-linear optimization problems and can automatically calculate finite difference gradients needed during the optimization. DOT can also deal with user supplied gradients.

References in zbMATH (referenced in 62 articles )

Showing results 21 to 40 of 62.
Sorted by year (citations)
  1. dos Santos, Rogério R.; Steffen, Valder jun.; Saramago, Sezimária de F. P.: Robot path planning in a constrained workspace by using optimal control techniques (2008)
  2. Kim, Jong-Rip; Choi, Dong-Hoon: Enhanced two-point diagonal quadratic approximation methods for design optimization (2008)
  3. Ambrósio, Jorge A. C.; Kecskeméthy, Andrés: Multibody dynamics of biomechanical models for human motion via optimization (2007)
  4. Ambrósio, Jorge A. C.; Neto, Maria Augusta; Leal, Rogério P.: Optimization of a complex flexible multibody systems with composite materials (2007)
  5. Shin, Moon-Kyun; Park, Ki-Jong; Park, Gyung-Jin: Optimization of structures with nonlinear behavior using equivalent loads (2007)
  6. Yi, Kiyoung; Choi, K. K.; Kim, Nam H.; Botkin, Mark E.: Design sensitivity analysis and optimization for minimizing springback of sheet-formed part (2007)
  7. Bergamaschi, Paulo Roberto; Nogueira, Antônio Carlos; de Fátima Pereira Saramago, Sezimária: Design and optimization of 3R manipulators using the workspace features (2006)
  8. Pirie, C. L.; Okubo, S.; Dullerud, G. E.; Tortorelli, D. A.: Robust linear time-varying control for trajectory tracking: computation and an experimental application (2006)
  9. Shu, J.; Watson, L. T.; Zombori, B. G.; Kamke, F. A.: WBCSim: an environment for modeling wood-based composites manufacture (2006) ioport
  10. Bellur-Ramaswamy, Ravi S.; Haber, Robert; Sobh, Nahil A.; Tortorelli, Daniel A.: Modelling and process optimization for functionally graded materials (2005)
  11. El-Sayed, M.; Sun, T.; Berry, J.: Shape optimization with computational fluid dynamics (2005)
  12. Gonçalves, João P. C.; Ambrósio, Jorge A. C.: Road vehicle modeling requirements for optimization of ride and handling (2005)
  13. Kim, Nam H.; Chang, Youngmin: Eulerian shape design sensitivity analysis and optimization with a fixed grid (2005)
  14. Tsai, K. Y.; Zhou, S. R.: The optimum design of 6-DOF isotropic parallel manipulators (2005)
  15. Jang, Gang-Won; Kim, Yoon Young; Choi, Kyung K.: Remesh-free shape optimization using the wavelet-Galerkin method (2004)
  16. Lamberti, Luciano; Pappalettere, Carmine: Improved sequential linear programming formulation for structural weight minimization (2004)
  17. Song, J.; Shanghvi, J. Y.; Michaleris, P.: Sensitivity analysis and optimization of thermo-elasto-plastic processes with applications to welding side heater design (2004)
  18. Paul, S.; Michaleris, P.; Shanghvi, J. Y.: Optimization of thermo-elasto-plastic processes using Eulerian sensitivity analysis (2003)
  19. Smith, Douglas E.: Design sensitivity analysis and optimization for polymer sheet extrusion and mold filling processes (2003)
  20. Gu, Wenjiong; Gürdal, Zafer; Missoum, Samy: Elastoplastic truss design using a displacement based optimization (2002)