Implementing the Kustin-Miller complex construction. The Kustin-Miller complex construction, due to A. Kustin and M. Miller, can be applied to a pair of resolutions of Gorenstein rings with certain properties to obtain a new Gorenstein ring and a resolution of it. It gives a tool to construct and analyze Gorenstein rings of high codimension. We describe the Kustin-Miller complex, its implementation in the Macaulay2 package KustinMiller, and explain how it can be applied to explicit examples.