OPQ

Orthogonal polynomials. Computation and approximation. Orthogonal polynomials are a widely used class of mathematical functions that are helpful in the solution of many important technical problems. This book provides, for the first time, a systematic development of computational techniques, including a suite of computer programs in Matlab downloadable from the Internet, to generate orthogonal polynomials of a great variety: OPQ: A MATLAB SUITE OF PROGRAMS FOR GENERATING ORTHOGONAL POLYNOMIALS AND RELATED QUADRATURE RULES.


References in zbMATH (referenced in 442 articles , 1 standard article )

Showing results 1 to 20 of 442.
Sorted by year (citations)

1 2 3 ... 21 22 23 next

  1. Alahmadi, J.; Pranić, M.; Reichel, L.: Rational Gauss quadrature rules for the approximation of matrix functionals involving Stieltjes functions (2022)
  2. Ariznabarreta, Gerardo; Mañas, Manuel: Multivariate Toda hierarchies and biorthogonal polynomials (2022)
  3. das Neves Rebocho, Maria: On the second-order holonomic equation for Sobolev-type orthogonal polynomials (2022)
  4. de la Calle Ysern, Bernardo; Spalević, Miodrag M.: On the computation of Patterson-type quadrature rules (2022)
  5. Fox, Rodney O.; Laurent, Frédérique: Hyperbolic quadrature method of moments for the one-dimensional kinetic equation (2022)
  6. Ge, Liang; Sun, Tongjun: An adaptive hp-version stochastic Galerkin method for constrained optimal control problem governed by random reaction diffusion equations (2022)
  7. Guo, Shimin; Li, Can; Li, Xiaoli; Mei, Liquan: Energy-conserving and time-stepping-varying ESAV-Hermite-Galerkin spectral scheme for nonlocal Klein-Gordon-Schrödinger system with fractional Laplacian in unbounded domains (2022)
  8. Mañas-Mañas, Juan F.; Moreno-Balcázar, Juan J.: Sobolev orthogonal polynomials: asymptotics and symbolic computation (2022)
  9. Milovanović, Gradimir V.; Masjed-Jamei, Mohammad; Moalemi, Zahra: Weighted nonstandard quadrature formulas based on values of linear differential operators (2022)
  10. Reichel, Lothar; Spalević, Miodrag M.: Averaged Gauss quadrature formulas: properties and applications (2022)
  11. Roy, N.; Dürr, R.; Bück, A.; Kumar, J.; Sundar, S.: Numerical methods for particle agglomeration and breakage in lid-driven cavity flows at low Reynolds numbers (2022)
  12. van Diejen, J. F.: Harmonic analysis of boxed hyperoctahedral Hall-Littlewood polynomials (2022)
  13. Alahmadi, J.; Alqahtani, H.; Pranić, M. S.; Reichel, L.: Gauss-Laurent-type quadrature rules for the approximation of functionals of a nonsymmetric matrix (2021)
  14. Alahmadi, J.; Pranić, M.; Reichel, L.: Computation of error bounds via generalized Gauss-Radau and Gauss-Lobatto rules (2021)
  15. Alhaidari, A. D.: Exponentially confining potential well (2021)
  16. An, Congpei; Wu, Hao-Ning: Tikhonov regularization for polynomial approximation problems in Gauss quadrature points (2021)
  17. An, Congpei; Wu, Hao-Ning: Lasso hyperinterpolation over general regions (2021)
  18. Awonusika, Richard Olu: On Jacobi polynomials and fractional spectral functions on compact symmetric spaces (2021)
  19. Barry, Paul: Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials (2021)
  20. Baustian, Falko; Filipová, Kateřina; Pospíšil, Jan: Solution of option pricing equations using orthogonal polynomial expansion. (2021)

1 2 3 ... 21 22 23 next